Cargando…

A role for complement receptor-like molecules in iron acquisition by Candida albicans

Candida albicans, an opportunistic fungal pathogen of humans, is dependent upon iron for growth. Consequently, human serum inhibits C. albicans growth due to the presence of high affinity iron-binding proteins that sequester serum iron, making it unavailable for use by the organism. We report that i...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119266/
https://www.ncbi.nlm.nih.gov/pubmed/1588285
_version_ 1782141219719086080
collection PubMed
description Candida albicans, an opportunistic fungal pathogen of humans, is dependent upon iron for growth. Consequently, human serum inhibits C. albicans growth due to the presence of high affinity iron-binding proteins that sequester serum iron, making it unavailable for use by the organism. We report that in the inhibitory environment of human serum, the growth of C. albicans can be restored by the addition of exogenous hemoglobin or heme, but not by protoporphyrin IX, the heme precursor that does not contain iron. We further report that C. albicans can utilize cell surface proteins that are homologues of the mammalian complement receptors (CR) to rosette complement-coated red blood cells (RBC) and obtain RBC-derived iron for growth. The ability of Candida to acquire RBC-derived iron under these conditions is dependent upon Candida-RBC rosetting mediated by CR-like molecules. Unopsonized RBC do not support Candida growth in serum, and restoration of Candida growth in serum by complement-opsonized RBC is inhibited by monoclonal antibodies to the human CR type 3 (CR3). In addition, activation of the human alternative pathway of complement by Candida leads to "bystander" deposition of C3 fragments on the surface of autologous, unopsonized RBC, generating the ligands necessary for Candida-RBC rosetting. These results suggest that C. albicans has evolved a unique strategy for acquiring iron from the host, which exploits the host complement system, and which may contribute to the pathogenic potential of the organism.
format Text
id pubmed-2119266
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21192662008-04-16 A role for complement receptor-like molecules in iron acquisition by Candida albicans J Exp Med Articles Candida albicans, an opportunistic fungal pathogen of humans, is dependent upon iron for growth. Consequently, human serum inhibits C. albicans growth due to the presence of high affinity iron-binding proteins that sequester serum iron, making it unavailable for use by the organism. We report that in the inhibitory environment of human serum, the growth of C. albicans can be restored by the addition of exogenous hemoglobin or heme, but not by protoporphyrin IX, the heme precursor that does not contain iron. We further report that C. albicans can utilize cell surface proteins that are homologues of the mammalian complement receptors (CR) to rosette complement-coated red blood cells (RBC) and obtain RBC-derived iron for growth. The ability of Candida to acquire RBC-derived iron under these conditions is dependent upon Candida-RBC rosetting mediated by CR-like molecules. Unopsonized RBC do not support Candida growth in serum, and restoration of Candida growth in serum by complement-opsonized RBC is inhibited by monoclonal antibodies to the human CR type 3 (CR3). In addition, activation of the human alternative pathway of complement by Candida leads to "bystander" deposition of C3 fragments on the surface of autologous, unopsonized RBC, generating the ligands necessary for Candida-RBC rosetting. These results suggest that C. albicans has evolved a unique strategy for acquiring iron from the host, which exploits the host complement system, and which may contribute to the pathogenic potential of the organism. The Rockefeller University Press 1992-06-01 /pmc/articles/PMC2119266/ /pubmed/1588285 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A role for complement receptor-like molecules in iron acquisition by Candida albicans
title A role for complement receptor-like molecules in iron acquisition by Candida albicans
title_full A role for complement receptor-like molecules in iron acquisition by Candida albicans
title_fullStr A role for complement receptor-like molecules in iron acquisition by Candida albicans
title_full_unstemmed A role for complement receptor-like molecules in iron acquisition by Candida albicans
title_short A role for complement receptor-like molecules in iron acquisition by Candida albicans
title_sort role for complement receptor-like molecules in iron acquisition by candida albicans
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119266/
https://www.ncbi.nlm.nih.gov/pubmed/1588285