Cargando…

Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes

The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the uni...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119272/
https://www.ncbi.nlm.nih.gov/pubmed/1613467
_version_ 1782141221347524608
collection PubMed
description The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD mouse and are located on chromosomes 1, 3, and 11. In addition to the autoimmune diabetes which is caused by destruction of the insulin-producing beta cells in the pancreas, other manifestations of autoimmunity are seen in the NOD mouse. These include mononuclear cell inflammation of the submandibular and lacrimal glands, as well as the presence of circulating autoantibodies. To determine the effect of the non-MHC diabetogenic genes on the development of autoimmunity, we constructed the NOD.B10-H- 2b (NOD.H-2b) strain, which possesses the non-MHC diabetogenic genes from the NOD mouse, but derives its MHC from the C57BL/10 (B10) strain. The NOD.H-2b strain does not develop insulitis, cyclophosphamide- induced diabetes, or spontaneous diabetes. It does, however, develop extensive lymphocytic infiltrates in the pancreas and the submandibular glands that are primarily composed of Thy 1.2+ T cells and B220+ B cells. In addition, autoantibodies are present in NOD.H-2b mice which recognize the "polar antigen" on the insulin-secreting rat tumor line RINm38. These observations demonstrate that the non-MHC genes in the NOD strain, in the absence of the NOD MHC, significantly contribute to the development of autoimmunity. The contribution of a single dose of the NOD MHC to autoimmunity was assessed with a (NOD x NOD.H-2b)F1 cross. Although only approximately 3% of F1 females developed spontaneous diabetes, approximately 50% of both female and male F1 mice developed insulitis, and 25% of females and 17% of males became diabetic after treatment with cyclophosphamide. These data demonstrate that the MHC-linked diabetogenic genes of the NOD mouse are dominant with decreasing levels of penetrance for the following phenotypes: insulitis greater than cyclophosphamide-induced diabetes greater than spontaneous diabetes.
format Text
id pubmed-2119272
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21192722008-04-16 Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes J Exp Med Articles The development of autoimmune diabetes in the nonobese diabetic (NOD) mouse is controlled by multiple genes. At least one diabetogenic gene is linked to the major histocompatibility complex (MHC) of the NOD and is most likely represented by the two genes encoding the alpha and beta chains of the unique NOD class II molecule. Three other diabetogenic loci have recently been identified in the NOD mouse and are located on chromosomes 1, 3, and 11. In addition to the autoimmune diabetes which is caused by destruction of the insulin-producing beta cells in the pancreas, other manifestations of autoimmunity are seen in the NOD mouse. These include mononuclear cell inflammation of the submandibular and lacrimal glands, as well as the presence of circulating autoantibodies. To determine the effect of the non-MHC diabetogenic genes on the development of autoimmunity, we constructed the NOD.B10-H- 2b (NOD.H-2b) strain, which possesses the non-MHC diabetogenic genes from the NOD mouse, but derives its MHC from the C57BL/10 (B10) strain. The NOD.H-2b strain does not develop insulitis, cyclophosphamide- induced diabetes, or spontaneous diabetes. It does, however, develop extensive lymphocytic infiltrates in the pancreas and the submandibular glands that are primarily composed of Thy 1.2+ T cells and B220+ B cells. In addition, autoantibodies are present in NOD.H-2b mice which recognize the "polar antigen" on the insulin-secreting rat tumor line RINm38. These observations demonstrate that the non-MHC genes in the NOD strain, in the absence of the NOD MHC, significantly contribute to the development of autoimmunity. The contribution of a single dose of the NOD MHC to autoimmunity was assessed with a (NOD x NOD.H-2b)F1 cross. Although only approximately 3% of F1 females developed spontaneous diabetes, approximately 50% of both female and male F1 mice developed insulitis, and 25% of females and 17% of males became diabetic after treatment with cyclophosphamide. These data demonstrate that the MHC-linked diabetogenic genes of the NOD mouse are dominant with decreasing levels of penetrance for the following phenotypes: insulitis greater than cyclophosphamide-induced diabetes greater than spontaneous diabetes. The Rockefeller University Press 1992-07-01 /pmc/articles/PMC2119272/ /pubmed/1613467 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title_full Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title_fullStr Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title_full_unstemmed Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title_short Autoimmune syndromes in major histocompatibility complex (MHC) congenic strains of nonobese diabetic (NOD) mice. The NOD MHC is dominant for insulitis and cyclophosphamide-induced diabetes
title_sort autoimmune syndromes in major histocompatibility complex (mhc) congenic strains of nonobese diabetic (nod) mice. the nod mhc is dominant for insulitis and cyclophosphamide-induced diabetes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119272/
https://www.ncbi.nlm.nih.gov/pubmed/1613467