Cargando…

Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction

Cyclosporin A (CsA) is a well-known immunosuppressive agent that modulates immune tolerance in many ways. CsA can give rise to a state of long-term nonimmunosuppressed transplantation tolerance, but it can also aggravate autoimmune diseases, and provoke specific forms of autoimmunity. These effects,...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119281/
https://www.ncbi.nlm.nih.gov/pubmed/1613464
_version_ 1782141223470891008
collection PubMed
description Cyclosporin A (CsA) is a well-known immunosuppressive agent that modulates immune tolerance in many ways. CsA can give rise to a state of long-term nonimmunosuppressed transplantation tolerance, but it can also aggravate autoimmune diseases, and provoke specific forms of autoimmunity. These effects, which are often paradoxical, remain largely unexplained. In this study, we investigated the effects of CsA on superantigen (superAg)-reactive peripheral T cells. The intravenous injection of either staphylococcal enterotoxin B (SEB), or Mls-1a cells into Mls-1b recipients, causes long-term in vitro nonresponsiveness (anergy) and partial elimination of the peripheral T cell receptor (TCR) V beta 8+/CD4+ and -V beta 6+/CD4+ T cell subsets, respectively. We report that CsA markedly enhances the peripheral elimination of SEB- and Mls-1a-reactive T cells such that up to 90% of the targeted CD4+/V beta subpopulations are deleted. The degree of deletion depends on the dose and the schedule of CsA administration, and the number of superAg injections. In situations where the extent of deletion is only moderate, we find that the remaining superAg-reactive T cells fail to develop anergy, unlike the T cells of control superAg-immunized mice. Higher doses of CsA are required to enhance T cell deletion (greater than or equal to 25 mg/kg/d, i.p.) than to impair anergy induction (greater than or equal to 6.25 mg/kg/d, i.p.). In view of these results, it appears that the degree of tolerance in CsA/superAg-treated mice depends on the balance between these opposing effects, i.e., enhancement of peripheral elimination versus the abrogation of anergy. The possibility of enhancing or preventing immune tolerance with a drug may have important clinical implications.
format Text
id pubmed-2119281
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21192812008-04-16 Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction J Exp Med Articles Cyclosporin A (CsA) is a well-known immunosuppressive agent that modulates immune tolerance in many ways. CsA can give rise to a state of long-term nonimmunosuppressed transplantation tolerance, but it can also aggravate autoimmune diseases, and provoke specific forms of autoimmunity. These effects, which are often paradoxical, remain largely unexplained. In this study, we investigated the effects of CsA on superantigen (superAg)-reactive peripheral T cells. The intravenous injection of either staphylococcal enterotoxin B (SEB), or Mls-1a cells into Mls-1b recipients, causes long-term in vitro nonresponsiveness (anergy) and partial elimination of the peripheral T cell receptor (TCR) V beta 8+/CD4+ and -V beta 6+/CD4+ T cell subsets, respectively. We report that CsA markedly enhances the peripheral elimination of SEB- and Mls-1a-reactive T cells such that up to 90% of the targeted CD4+/V beta subpopulations are deleted. The degree of deletion depends on the dose and the schedule of CsA administration, and the number of superAg injections. In situations where the extent of deletion is only moderate, we find that the remaining superAg-reactive T cells fail to develop anergy, unlike the T cells of control superAg-immunized mice. Higher doses of CsA are required to enhance T cell deletion (greater than or equal to 25 mg/kg/d, i.p.) than to impair anergy induction (greater than or equal to 6.25 mg/kg/d, i.p.). In view of these results, it appears that the degree of tolerance in CsA/superAg-treated mice depends on the balance between these opposing effects, i.e., enhancement of peripheral elimination versus the abrogation of anergy. The possibility of enhancing or preventing immune tolerance with a drug may have important clinical implications. The Rockefeller University Press 1992-07-01 /pmc/articles/PMC2119281/ /pubmed/1613464 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title_full Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title_fullStr Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title_full_unstemmed Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title_short Cyclosporin A markedly enhances superantigen-induced peripheral T cell deletion and inhibits anergy induction
title_sort cyclosporin a markedly enhances superantigen-induced peripheral t cell deletion and inhibits anergy induction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119281/
https://www.ncbi.nlm.nih.gov/pubmed/1613464