Cargando…

Calmodulin is a subunit of nitric oxide synthase from macrophages

A central issue in nitric oxide (NO) research is to understand how NO can act in some settings as a servoregulator and in others as a cytotoxin. To answer this, we have sought a molecular basis for the differential regulation of the two known types of NO synthase (NOS). Constitutive NOS's in en...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119310/
https://www.ncbi.nlm.nih.gov/pubmed/1380065
Descripción
Sumario:A central issue in nitric oxide (NO) research is to understand how NO can act in some settings as a servoregulator and in others as a cytotoxin. To answer this, we have sought a molecular basis for the differential regulation of the two known types of NO synthase (NOS). Constitutive NOS's in endothelium and neurons are activated by agonist- induced elevation of Ca2+ and resultant binding of calmodulin (CaM). In contrast, NOS in macrophages does not require added Ca2+ or CaM, but is regulated instead by transcription. We show here that macrophage NOS contains, as a tightly bound subunit, a molecule with the immunologic reactivity, high performance liquid chromatography retention time, tryptic map, partial amino acid sequence, and exact molecular mass of CaM. In contrast to most CaM-dependent enzymes, macrophage NOS binds CaM tightly without a requirement for elevated Ca2+. This may explain why NOS that is independent of Ca2+ and elevated CaM appears to be activated simply by being synthesized.