Cargando…

Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A

The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synt...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1992
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119347/
https://www.ncbi.nlm.nih.gov/pubmed/1324971
_version_ 1782141239343185920
collection PubMed
description The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synthesis. Calyculin A, a more potent inhibitor of phosphatase 1, has similar effects. TNF-alpha mRNA accumulation in okadaic acid-treated monocytes is due to increased TNF- alpha mRNA stability and transcription rate. The increase in TNF-alpha mRNA stability is more remarkable in okadaic acid-treated monocytes than the mRNA stability of other cytokines, such as interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6. Gel retardation studies show the stimulation of AP-1, AP-2, and NF-kappa B binding activities in okadaic acid-stimulated monocytes. This increase may correlate with the increase in TNF-alpha mRNA transcription rate. In addition to the stimulation of TNF-alpha secretion by monocytes, okadaic acid appears to modulate TNF-alpha precursor processing, as indicated by a marked increase in the cell-associated 26-kD precursor. These results suggest that active basal phosphorylation/dephosphorylation occurs in monocytes, and that protein phosphatase 1 or 2A is important in regulating TNF-alpha gene transcription, translation, and posttranslational modification.
format Text
id pubmed-2119347
institution National Center for Biotechnology Information
language English
publishDate 1992
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21193472008-04-16 Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A J Exp Med Articles The protein phosphatase 1 and 2A inhibitor, okadaic acid, has been shown to stimulate many cellular functions by increasing the phosphorylation state of phosphoproteins. In human monocytes, okadaic acid by itself stimulates tumor necrosis factor alpha (TNF-alpha) mRNA accumulation and TNF-alpha synthesis. Calyculin A, a more potent inhibitor of phosphatase 1, has similar effects. TNF-alpha mRNA accumulation in okadaic acid-treated monocytes is due to increased TNF- alpha mRNA stability and transcription rate. The increase in TNF-alpha mRNA stability is more remarkable in okadaic acid-treated monocytes than the mRNA stability of other cytokines, such as interleukin 1 alpha (IL-1 alpha), IL-1 beta, and IL-6. Gel retardation studies show the stimulation of AP-1, AP-2, and NF-kappa B binding activities in okadaic acid-stimulated monocytes. This increase may correlate with the increase in TNF-alpha mRNA transcription rate. In addition to the stimulation of TNF-alpha secretion by monocytes, okadaic acid appears to modulate TNF-alpha precursor processing, as indicated by a marked increase in the cell-associated 26-kD precursor. These results suggest that active basal phosphorylation/dephosphorylation occurs in monocytes, and that protein phosphatase 1 or 2A is important in regulating TNF-alpha gene transcription, translation, and posttranslational modification. The Rockefeller University Press 1992-09-01 /pmc/articles/PMC2119347/ /pubmed/1324971 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title_full Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title_fullStr Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title_full_unstemmed Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title_short Stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2A
title_sort stimulation of tumor necrosis factor alpha production in human monocytes by inhibitors of protein phosphatase 1 and 2a
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119347/
https://www.ncbi.nlm.nih.gov/pubmed/1324971