Cargando…

Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans

To investigate the relationship between structure and function of kinesin-like proteins, we have identified by polymerase chain reaction (PCR) a new kinesin-like protein in the filamentous fungus Aspergillus nidulans, which we have designated KLPA. DNA sequence analysis showed that the predicted KLP...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119479/
https://www.ncbi.nlm.nih.gov/pubmed/8416986
_version_ 1782141270489038848
collection PubMed
description To investigate the relationship between structure and function of kinesin-like proteins, we have identified by polymerase chain reaction (PCR) a new kinesin-like protein in the filamentous fungus Aspergillus nidulans, which we have designated KLPA. DNA sequence analysis showed that the predicted KLPA protein contains a COOH terminal kinesin-like motor domain. Despite the structural similarity of KLPA to the KAR3 and NCD kinesin-like proteins of Saccharomyces cerevisiae and Drosophila melanogaster, which also posses COOH-terminal kinesin-like motor domains, there are no significant sequence similarities between the nonmotor or tail portions of these proteins. Nevertheless, expression studies in S. cerevisiae showed that klpA can complement a null mutation in KAR3, indicating that primary amino acid sequence conservation between the tail domains of kinesin-like proteins is not necessarily required for conserved function. Chromosomal deletion of the klpA gene exerted no observable mutant phenotype, suggesting that in A. nidulans there are likely to be other proteins functionally redundant with KLPA. Interestingly, the temperature sensitive phenotype of a mutation in another gene, bimC, which encodes a kinesin-like protein involved in mitotic spindle function in A. nidulans, was suppressed by deletion of klpA. We hypothesize that the loss of KLPA function redresses unbalanced forces within the spindle caused by mutation in bimC, and that the KLPA and BIMC kinesin-like proteins may play opposing roles in spindle function.
format Text
id pubmed-2119479
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21194792008-05-01 Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans J Cell Biol Articles To investigate the relationship between structure and function of kinesin-like proteins, we have identified by polymerase chain reaction (PCR) a new kinesin-like protein in the filamentous fungus Aspergillus nidulans, which we have designated KLPA. DNA sequence analysis showed that the predicted KLPA protein contains a COOH terminal kinesin-like motor domain. Despite the structural similarity of KLPA to the KAR3 and NCD kinesin-like proteins of Saccharomyces cerevisiae and Drosophila melanogaster, which also posses COOH-terminal kinesin-like motor domains, there are no significant sequence similarities between the nonmotor or tail portions of these proteins. Nevertheless, expression studies in S. cerevisiae showed that klpA can complement a null mutation in KAR3, indicating that primary amino acid sequence conservation between the tail domains of kinesin-like proteins is not necessarily required for conserved function. Chromosomal deletion of the klpA gene exerted no observable mutant phenotype, suggesting that in A. nidulans there are likely to be other proteins functionally redundant with KLPA. Interestingly, the temperature sensitive phenotype of a mutation in another gene, bimC, which encodes a kinesin-like protein involved in mitotic spindle function in A. nidulans, was suppressed by deletion of klpA. We hypothesize that the loss of KLPA function redresses unbalanced forces within the spindle caused by mutation in bimC, and that the KLPA and BIMC kinesin-like proteins may play opposing roles in spindle function. The Rockefeller University Press 1993-01-01 /pmc/articles/PMC2119479/ /pubmed/8416986 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title_full Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title_fullStr Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title_full_unstemmed Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title_short Suppression of the bimC4 mitotic spindle defect by deletion of klpA, a gene encoding a KAR3-related kinesin-like protein in Aspergillus nidulans
title_sort suppression of the bimc4 mitotic spindle defect by deletion of klpa, a gene encoding a kar3-related kinesin-like protein in aspergillus nidulans
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119479/
https://www.ncbi.nlm.nih.gov/pubmed/8416986