Cargando…

Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain

We have previously shown that peptides derived from the thrombospondin sequence, CSVTCG, promoted tumor cell adhesion. To further investigate this observation, the CSVTCG-tumor cell adhesion receptor from A549 human lung adenocarcinoma cells was isolated and characterized. A single protein peak was...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119506/
https://www.ncbi.nlm.nih.gov/pubmed/8421063
_version_ 1782141276854943744
collection PubMed
description We have previously shown that peptides derived from the thrombospondin sequence, CSVTCG, promoted tumor cell adhesion. To further investigate this observation, the CSVTCG-tumor cell adhesion receptor from A549 human lung adenocarcinoma cells was isolated and characterized. A single protein peak was isolated by CSVTCG affinity chromatography which also analyzed as a single peak by anion exchange chromatography. The purified protein had a pI of 4.7 and analyzed on SDS-gels as a single band of M(r) = 50,000 under nonreducing conditions and as two protein bands of M(r) = 50,000, and 60,000 under reducing conditions. Purified CSVTCG binding protein (CBP) bound either CSVTCG- or TSP- Sepharose but showed little interaction with either VCTGSC- or BSA- Sepharose. CBP was cell surface exposed. CSVTCG derivatized with [125I] Bolton-Hunter reagent was taken up by cells in a dose-dependent manner and the cell association was inhibited with a monospecific polyclonal anti-CBP antibody. Examination of the cell proteins crosslinked to labeled CSVTCG by SDS-gel electrophoresis revealed one band that comigrated with purified CPB. Using an in vitro binding assay, purified CBP bound mannose, galactose, and glucosamine-specific lectins. CBP bound TSP saturably and reversibly. The binding was Ca+2/Mg+2 ion dependent and inhibited with fluid phase TSP and anti-CBP. Little or no binding was observed on BSA, fibronectin, GRGES, and GRGDS. Heparin, but not lactose, inhibited binding. Anti-CBP IgG and anti-CSVTCG peptide IgG inhibited A549 cell spreading and adhesion on TSP but not on fibronectin and laminin. These results indicate that CBP and the CSVTCG peptide domain of TSP can mediate TSP-promoted tumor cell adhesion.
format Text
id pubmed-2119506
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21195062008-05-01 Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain J Cell Biol Articles We have previously shown that peptides derived from the thrombospondin sequence, CSVTCG, promoted tumor cell adhesion. To further investigate this observation, the CSVTCG-tumor cell adhesion receptor from A549 human lung adenocarcinoma cells was isolated and characterized. A single protein peak was isolated by CSVTCG affinity chromatography which also analyzed as a single peak by anion exchange chromatography. The purified protein had a pI of 4.7 and analyzed on SDS-gels as a single band of M(r) = 50,000 under nonreducing conditions and as two protein bands of M(r) = 50,000, and 60,000 under reducing conditions. Purified CSVTCG binding protein (CBP) bound either CSVTCG- or TSP- Sepharose but showed little interaction with either VCTGSC- or BSA- Sepharose. CBP was cell surface exposed. CSVTCG derivatized with [125I] Bolton-Hunter reagent was taken up by cells in a dose-dependent manner and the cell association was inhibited with a monospecific polyclonal anti-CBP antibody. Examination of the cell proteins crosslinked to labeled CSVTCG by SDS-gel electrophoresis revealed one band that comigrated with purified CPB. Using an in vitro binding assay, purified CBP bound mannose, galactose, and glucosamine-specific lectins. CBP bound TSP saturably and reversibly. The binding was Ca+2/Mg+2 ion dependent and inhibited with fluid phase TSP and anti-CBP. Little or no binding was observed on BSA, fibronectin, GRGES, and GRGDS. Heparin, but not lactose, inhibited binding. Anti-CBP IgG and anti-CSVTCG peptide IgG inhibited A549 cell spreading and adhesion on TSP but not on fibronectin and laminin. These results indicate that CBP and the CSVTCG peptide domain of TSP can mediate TSP-promoted tumor cell adhesion. The Rockefeller University Press 1993-01-02 /pmc/articles/PMC2119506/ /pubmed/8421063 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title_full Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title_fullStr Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title_full_unstemmed Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title_short Identification and characterization of a tumor cell receptor for CSVTCG, a thrombospondin adhesive domain
title_sort identification and characterization of a tumor cell receptor for csvtcg, a thrombospondin adhesive domain
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119506/
https://www.ncbi.nlm.nih.gov/pubmed/8421063