Cargando…

GTP gamma S inhibits organelle transport along axonal microtubules

Movements of membrane-bounded organelles through cytoplasm frequently occur along microtubules, as in the neuron-specific case of fast axonal transport. To shed light on how microtubule-based organelle motility is regulated, pharmacological probes for GTP-binding proteins, or protein kinases or phos...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119514/
https://www.ncbi.nlm.nih.gov/pubmed/7678421
_version_ 1782141278760206336
collection PubMed
description Movements of membrane-bounded organelles through cytoplasm frequently occur along microtubules, as in the neuron-specific case of fast axonal transport. To shed light on how microtubule-based organelle motility is regulated, pharmacological probes for GTP-binding proteins, or protein kinases or phosphatases were perfused into axoplasm extruded from squid (Loligo pealei) giant axons, and effects on fast axonal transport were monitored by quantitative video-enhanced light microscopy. GTP gamma S caused concentration-dependent and time-dependent declines in organelle transport velocities. GDP beta S was a less potent inhibitor. Excess GTP, but not GDP, masked the effects of coperfused GTP gamma S. The effects of GTP gamma S on transport were not mimicked by broad spectrum inhibitors of protein kinases (K-252a) or phosphatases (microcystin LR and okadaic acid), or as shown earlier, by ATP gamma S. Therefore, suppression of organelle motility by GTP gamma S was guanine nucleotide- specific and evidently did not involve irreversible transfer of thiophosphate groups to protein. Instead, the data imply that organelle transport in the axon is modulated by cycles of GTP hydrolysis and nucleotide exchange by one or more GTP-binding proteins. Fast axonal transport was not perturbed by AlF4-, indicating that the GTP gamma S- sensitive factors do not include heterotrimeric G-proteins. Potential axoplasmic targets of GTP gamma S include dynamin and multiple small GTP-binding proteins, which were shown to be present in squid axoplasm. These collective findings suggest a novel strategy for regulating microtubule-based organelle transport and a new role for GTP-binding proteins.
format Text
id pubmed-2119514
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21195142008-05-01 GTP gamma S inhibits organelle transport along axonal microtubules J Cell Biol Articles Movements of membrane-bounded organelles through cytoplasm frequently occur along microtubules, as in the neuron-specific case of fast axonal transport. To shed light on how microtubule-based organelle motility is regulated, pharmacological probes for GTP-binding proteins, or protein kinases or phosphatases were perfused into axoplasm extruded from squid (Loligo pealei) giant axons, and effects on fast axonal transport were monitored by quantitative video-enhanced light microscopy. GTP gamma S caused concentration-dependent and time-dependent declines in organelle transport velocities. GDP beta S was a less potent inhibitor. Excess GTP, but not GDP, masked the effects of coperfused GTP gamma S. The effects of GTP gamma S on transport were not mimicked by broad spectrum inhibitors of protein kinases (K-252a) or phosphatases (microcystin LR and okadaic acid), or as shown earlier, by ATP gamma S. Therefore, suppression of organelle motility by GTP gamma S was guanine nucleotide- specific and evidently did not involve irreversible transfer of thiophosphate groups to protein. Instead, the data imply that organelle transport in the axon is modulated by cycles of GTP hydrolysis and nucleotide exchange by one or more GTP-binding proteins. Fast axonal transport was not perturbed by AlF4-, indicating that the GTP gamma S- sensitive factors do not include heterotrimeric G-proteins. Potential axoplasmic targets of GTP gamma S include dynamin and multiple small GTP-binding proteins, which were shown to be present in squid axoplasm. These collective findings suggest a novel strategy for regulating microtubule-based organelle transport and a new role for GTP-binding proteins. The Rockefeller University Press 1993-01-02 /pmc/articles/PMC2119514/ /pubmed/7678421 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
GTP gamma S inhibits organelle transport along axonal microtubules
title GTP gamma S inhibits organelle transport along axonal microtubules
title_full GTP gamma S inhibits organelle transport along axonal microtubules
title_fullStr GTP gamma S inhibits organelle transport along axonal microtubules
title_full_unstemmed GTP gamma S inhibits organelle transport along axonal microtubules
title_short GTP gamma S inhibits organelle transport along axonal microtubules
title_sort gtp gamma s inhibits organelle transport along axonal microtubules
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119514/
https://www.ncbi.nlm.nih.gov/pubmed/7678421