Cargando…

The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis

Dictyostelium alpha-actinin is a Ca(2+)-regulated F-actin cross-linking protein. To test the inhibitory function of the two EF hands, point mutations were introduced into either one or both Ca(2+)-binding sites. After mutations, the two EF hands were distinguishable with respect to their regulatory...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119564/
https://www.ncbi.nlm.nih.gov/pubmed/8486739
_version_ 1782141290270425088
collection PubMed
description Dictyostelium alpha-actinin is a Ca(2+)-regulated F-actin cross-linking protein. To test the inhibitory function of the two EF hands, point mutations were introduced into either one or both Ca(2+)-binding sites. After mutations, the two EF hands were distinguishable with respect to their regulatory activities. Inactivation of EF hand I abolished completely the F-actin cross-linking activity of Dictyostelium discoideum alpha-actinin but Ca2+ binding by EF hand II was still observed in a 45Ca2+ overlay assay. In contrast, after mutation of EF hand II the molecule was still active and inhibited by Ca2+; however, approximately 500-fold more Ca2+ was necessary for inhibition and 45Ca2+ binding could not be detected in the overlay assay. These data indicate that EF hand I has a low affinity for Ca2+ and EF hand II a high affinity, implying a regulatory function of EF hand I in the inhibition of F-actin cross-linking activity. Biochemical data is presented which allows us to distinguish two functions of the EF hand domains in D. discoideum alpha-actinin: (a) at the level of the EF- hands, the Ca(2+)-binding affinity of EF hand I was increased by EF hand II in a cooperative manner, and (b) at the level of the two subunits, the EF hands acted as an on/off switch for actin-binding in the neighboring subunit. To corroborate in vitro observations in an in vivo system we tried to rescue the abnormal phenotype of a mutant (Witke, W., M. Schleicher, A. A. Noegel. 1992. Cell. 68:53-62) by introducing the mutated alpha-actinin cDNAs. In agreement with the biochemical data, only the molecule modified in EF hand II could rescue the abnormal phenotype. Considering the fact that the active construct is "always on" because it requires nonphysiological, high Ca2+ concentrations for inactivation, it is interesting to note that an unregulated alpha-actinin was able to rescue the mutant phenotype.
format Text
id pubmed-2119564
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21195642008-05-01 The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis J Cell Biol Articles Dictyostelium alpha-actinin is a Ca(2+)-regulated F-actin cross-linking protein. To test the inhibitory function of the two EF hands, point mutations were introduced into either one or both Ca(2+)-binding sites. After mutations, the two EF hands were distinguishable with respect to their regulatory activities. Inactivation of EF hand I abolished completely the F-actin cross-linking activity of Dictyostelium discoideum alpha-actinin but Ca2+ binding by EF hand II was still observed in a 45Ca2+ overlay assay. In contrast, after mutation of EF hand II the molecule was still active and inhibited by Ca2+; however, approximately 500-fold more Ca2+ was necessary for inhibition and 45Ca2+ binding could not be detected in the overlay assay. These data indicate that EF hand I has a low affinity for Ca2+ and EF hand II a high affinity, implying a regulatory function of EF hand I in the inhibition of F-actin cross-linking activity. Biochemical data is presented which allows us to distinguish two functions of the EF hand domains in D. discoideum alpha-actinin: (a) at the level of the EF- hands, the Ca(2+)-binding affinity of EF hand I was increased by EF hand II in a cooperative manner, and (b) at the level of the two subunits, the EF hands acted as an on/off switch for actin-binding in the neighboring subunit. To corroborate in vitro observations in an in vivo system we tried to rescue the abnormal phenotype of a mutant (Witke, W., M. Schleicher, A. A. Noegel. 1992. Cell. 68:53-62) by introducing the mutated alpha-actinin cDNAs. In agreement with the biochemical data, only the molecule modified in EF hand II could rescue the abnormal phenotype. Considering the fact that the active construct is "always on" because it requires nonphysiological, high Ca2+ concentrations for inactivation, it is interesting to note that an unregulated alpha-actinin was able to rescue the mutant phenotype. The Rockefeller University Press 1993-05-01 /pmc/articles/PMC2119564/ /pubmed/8486739 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title_full The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title_fullStr The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title_full_unstemmed The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title_short The Ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
title_sort ca(2+)-binding domains in non-muscle type alpha-actinin: biochemical and genetic analysis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119564/
https://www.ncbi.nlm.nih.gov/pubmed/8486739