Cargando…

Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components

Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of r...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119580/
https://www.ncbi.nlm.nih.gov/pubmed/7688750
_version_ 1782141293905838080
collection PubMed
description Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution.
format Text
id pubmed-2119580
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21195802008-05-01 Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components J Cell Biol Articles Nucleoli, the sites of rRNA synthesis, rRNA processing, and the assembly of ribosomes, are dynamic organelles that, in most cells, disperse and reform during mitosis. The mechanisms that regulate nucleolar formation are unknown as is the relationship between nucleolar morphology and the pathway of ribosome biogenesis. In this report we describe the in vitro formation of nucleolus-like particles (NLPs) from soluble extracts of nucleoli. NLPs, which reached sizes comparable to nucleoli (1-3 microns), were found to contain 40% of the nucleolar DNA, RNA, and protein. The ultrastructure of NLPs resembled that of a number of in vivo structures including compact nucleoli, prenucleolar bodies, and pseudonucleoli. The particles were composed of two morphologically distinct regions. The core resembled the dense fibrillar component (DFC) of nucleoli while the cortex resembled the granular component (GC) of nucleoli. The cortex of NLPs contained numerous 15-20 nm osmophilic granules that resembled the preribosomes found in the GC of nucleoli. The distribution of nucleolar proteins in NLPs also resembled that in nucleoli. BN46/51, a component of the GC of nucleoli, was restricted to the GC-like cortex of NLPs. A mAb that bound to the DFC of nucleoli, bound only to the DFC-like core of NLPs while a second mAb that bound to both the DFC and GC of nucleoli, bound to both the core and cortex of NLPs. Thus solubilized components of nucleoli can reassociate in vitro to produce particles that resemble nucleoli in their size, ultrastructure, and protein distribution. The Rockefeller University Press 1993-08-02 /pmc/articles/PMC2119580/ /pubmed/7688750 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title_full Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title_fullStr Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title_full_unstemmed Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title_short Nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
title_sort nucleolus-like morphology produced during the in vitro reassociation of nucleolar components
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119580/
https://www.ncbi.nlm.nih.gov/pubmed/7688750