Cargando…
Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein
The Drosophila retinal degeneration B (rdgB) mutation causes abnormal photoreceptor response and light-enhanced retinal degeneration. Immunoblots using polyclonal anti-rdgB serum showed that rdgB is a 160- kD membrane protein. The antiserum localized the rdgB protein in photoreceptors, antennae, and...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119623/ https://www.ncbi.nlm.nih.gov/pubmed/8354691 |
_version_ | 1782141303910301696 |
---|---|
collection | PubMed |
description | The Drosophila retinal degeneration B (rdgB) mutation causes abnormal photoreceptor response and light-enhanced retinal degeneration. Immunoblots using polyclonal anti-rdgB serum showed that rdgB is a 160- kD membrane protein. The antiserum localized the rdgB protein in photoreceptors, antennae, and regions of the Drosophila brain, indicating that the rdgB protein functions in many sensory and neuronal cells. In photoreceptors, the protein localized adjacent to the rhabdomeres, in the vicinity of the subrhabdomeric cisternae. The rdgB protein's amino-terminal 281 residues are > 40% identical to the rat brain phosphatidylinositol transfer protein (PI-TP). A truncated rdgB protein, which contains only this amino-terminal domain, possesses a phosphatidylinositol transfer activity in vitro. The remaining 773 carboxyl terminal amino acids have additional functional domains. Nitrocellulose overlay experiments reveal that an acidic amino acid domain, adjacent to the PI transfer domain, binds 45Ca+2. Six hydrophobic segments are found in the middle of the putative translation product and likely function as membrane spanning domains. These results suggest that the rdgB protein, unlike the small soluble PI-TPs, is a membrane-associated PI-TP, which may be directly regulated by light-induced changes in intracellular calcium. |
format | Text |
id | pubmed-2119623 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21196232008-05-01 Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein J Cell Biol Articles The Drosophila retinal degeneration B (rdgB) mutation causes abnormal photoreceptor response and light-enhanced retinal degeneration. Immunoblots using polyclonal anti-rdgB serum showed that rdgB is a 160- kD membrane protein. The antiserum localized the rdgB protein in photoreceptors, antennae, and regions of the Drosophila brain, indicating that the rdgB protein functions in many sensory and neuronal cells. In photoreceptors, the protein localized adjacent to the rhabdomeres, in the vicinity of the subrhabdomeric cisternae. The rdgB protein's amino-terminal 281 residues are > 40% identical to the rat brain phosphatidylinositol transfer protein (PI-TP). A truncated rdgB protein, which contains only this amino-terminal domain, possesses a phosphatidylinositol transfer activity in vitro. The remaining 773 carboxyl terminal amino acids have additional functional domains. Nitrocellulose overlay experiments reveal that an acidic amino acid domain, adjacent to the PI transfer domain, binds 45Ca+2. Six hydrophobic segments are found in the middle of the putative translation product and likely function as membrane spanning domains. These results suggest that the rdgB protein, unlike the small soluble PI-TPs, is a membrane-associated PI-TP, which may be directly regulated by light-induced changes in intracellular calcium. The Rockefeller University Press 1993-09-01 /pmc/articles/PMC2119623/ /pubmed/8354691 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title | Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title_full | Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title_fullStr | Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title_full_unstemmed | Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title_short | Localization of Drosophila retinal degeneration B, a membrane- associated phosphatidylinositol transfer protein |
title_sort | localization of drosophila retinal degeneration b, a membrane- associated phosphatidylinositol transfer protein |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119623/ https://www.ncbi.nlm.nih.gov/pubmed/8354691 |