Cargando…

A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically

We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119643/
https://www.ncbi.nlm.nih.gov/pubmed/8320267
_version_ 1782141308592193536
collection PubMed
description We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage- independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage- independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage- independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence.
format Text
id pubmed-2119643
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21196432008-05-01 A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically J Cell Biol Articles We have examined cell cycle control of anchorage-independent growth in nontransformed fibroblasts. In previous studies using G0-synchronized NRK and NIH-3T3 cells, we showed that anchorage-independent growth is regulated by an attachment-dependent transition at G1/S that resembles the START control point in the cell cycle of Saccharomyces cerevisiae. In the studies reported here, we have synchronized NRK and NIH-3T3 fibroblasts immediately after this attachment-dependent transition to determine if other portions of the fibroblast cell cycle are similarly regulated by adhesion. Our results show that S-, G2-, and M-phase progression proceed in the absence of attachment. Thus, we conclude that the adhesion requirement for proliferation of these cells can be explained in terms of the single START-like transition. In related studies, we show that TGF-beta 1 overrides the attachment-dependent transition in NRK and AKR-2B fibroblasts (lines in which TGF-beta 1 induces anchorage-independent growth), but not in NIH-3T3 or Balb/c 3T3 fibroblasts (lines in which TGF-beta 1 fails to induce anchorage- independent growth). These results show that (a) adhesion and TGF-beta 1 can have similar effects in stimulating cell cycle progression from G1 to S and (b) the differential effects of TGF-beta 1 on anchorage- independent growth of various fibroblast lines are directly reflected in the differential effects of the growth factor at G1/S. Finally, we have randomly mutagenized NRK fibroblasts to generate mutant lines that have lost their attachment/TGF-beta 1 requirement for G1/S transit while retaining their normal mitogen requirements for proliferation. These clones, which readily proliferate in mitogen-supplemented soft agar, appear non-transformed in monolayer: they are well spread, nonrefractile, and contact inhibited. The existence of this new fibroblast phenotype demonstrates (a) that the growth factor and adhesion/TGF-beta 1 requirements for cell cycle progression are genetically separable, (b) that the two major control points in the fibroblast cell cycle (G0/G1 and G1/S) are regulated by distinct extracellular signals, and (c) that the genes regulating anchorage- independent growth need not be involved in regulating contact inhibition, focus formation, or growth factor dependence. The Rockefeller University Press 1993-07-02 /pmc/articles/PMC2119643/ /pubmed/8320267 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title_full A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title_fullStr A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title_full_unstemmed A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title_short A cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and TGF-beta 1 control G1/S transit specifically
title_sort cell cycle and mutational analysis of anchorage-independent growth: cell adhesion and tgf-beta 1 control g1/s transit specifically
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119643/
https://www.ncbi.nlm.nih.gov/pubmed/8320267