Cargando…
Structures linking microfilament bundles to the membrane at focal contacts
We used quick-freeze, deep-etch, rotary replication and immunogold cytochemistry to identify a new structure at focal contacts. In Xenopus fibroblasts, elongated aggregates of particles project from the membrane to contact bundles of actin microfilaments. Before terminating, a single bundle of micro...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119644/ https://www.ncbi.nlm.nih.gov/pubmed/7686554 |
Sumario: | We used quick-freeze, deep-etch, rotary replication and immunogold cytochemistry to identify a new structure at focal contacts. In Xenopus fibroblasts, elongated aggregates of particles project from the membrane to contact bundles of actin microfilaments. Before terminating, a single bundle of microfilaments interacts with several aggregates that appear intermittently over a distance of several microns. Aggregates are enriched in proteins believed to mediate actin- membrane interactions at focal contacts, including beta 1-integrin, vinculin, and talin, but they appear to contain less alpha-actinin and filamin. We also identified a second, smaller class of aggregates of membrane particles that contained beta 1-integrin but not vinculin or talin and that were not associated with actin microfilaments. Our results indicate that vinculin, talin, and beta 1-integrin are assembled into distinctive structures that mediate multiple lateral interactions between microfilaments and the membrane at focal contacts. |
---|