Cargando…
Fluorescent labeling of nascent RNA reveals transcription by RNA polymerase II in domains scattered throughout the nucleus
Several nuclear activities and components are concentrated in discrete nuclear compartments. To understand the functional significance of nuclear compartmentalization, knowledge on the spatial distribution of transcriptionally active chromatin is essential. We have examined the distribution of sites...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119648/ https://www.ncbi.nlm.nih.gov/pubmed/8320255 |
Sumario: | Several nuclear activities and components are concentrated in discrete nuclear compartments. To understand the functional significance of nuclear compartmentalization, knowledge on the spatial distribution of transcriptionally active chromatin is essential. We have examined the distribution of sites of transcription by RNA polymerase II (RPII) by labeling nascent RNA with 5-bromouridine 5'-triphosphate, in vitro and in vivo. Nascent RPII transcripts were found in over 100 defined areas, scattered throughout the nucleoplasm. No preferential localization was observed in either the nuclear interior or the periphery. Each transcription site may represent the activity of a single gene or, considering the number of active pre-mRNA genes in a cell, of a cluster of active genes. The relation between the distribution of nascent RPII transcripts and that of the essential splicing factor SC-35 was investigated in double labeling experiments. Antibodies against SC-35 recognize a number of well-defined, intensely labeled nuclear domains, in addition to labeling of more diffuse areas between these domains (Spector, D. L., X. -D. Fu, and T. Maniatis. 1991. EMBO (Eur. Mol. Biol. Organ.) J. 10:3467-3481). We observe no correlation between intensely labeled SC-35 domains and sites of pre-mRNA synthesis. However, many sites of RPII synthesis colocalize with weakly stained areas. This implies that contranscriptional splicing takes place in these weakly stained areas. These areas may also be sites where splicing is completed posttranscriptionally. Intensely labeled SC-35 domains may function as sites for assembly, storage, or regeneration of splicing components, or as compartments for degradation of introns. |
---|