Cargando…

Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry

We examined the Ca(2+)-dependent regulation of brush border (BB) myosin- I by probing the possible roles of the calmodulin (CM) light chains. BB myosin-I MgATPase activity, sensitivity to chymotryptic digestion, and mechanochemical properties were assessed using 1-10 microM Ca2+ and in the presence...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119657/
https://www.ncbi.nlm.nih.gov/pubmed/8335688
_version_ 1782141311859556352
collection PubMed
description We examined the Ca(2+)-dependent regulation of brush border (BB) myosin- I by probing the possible roles of the calmodulin (CM) light chains. BB myosin-I MgATPase activity, sensitivity to chymotryptic digestion, and mechanochemical properties were assessed using 1-10 microM Ca2+ and in the presence of exogenously added CM since it has been proposed that this myosin is regulated by calcium-induced CM dissociation from the 119-kD heavy chain. Each of these BB myosin-I properties were dramatically altered by the same threshold of 2-3 microM Ca2+. Enzymatically active NH2-terminal proteolytic fragments of BB myosin-I which lack the CM binding domains (the 78-kD peptide) differ from CM- containing peptides in that the former is completely insensitive to Ca2+. Furthermore, the 78-kD peptide exhibits high levels of MgATPase activity which are comparable to that observed for BB myosin-I in the presence of Ca2+. This suggests that Ca2+ regulates BB myosin-I MgATPase by binding directly to the CM light chains, and that CM acts to repress endogenous MgATPase activity. Ca(2+)-induced CM dissociation from BB myosin-I can be prevented by the addition of exogenous CM. Under these conditions Ca2+ causes a reversible slowing of motility. In contrast, in the absence of exogenous CM, motility is stopped by Ca2+. We demonstrate this reversible slowing is not due to the presence of inactive BB myosin-I molecules exerting a "braking" effect on motile filaments. However, we did observe Ca(2+)-independent slowing of motility by acidic phospholipids, suggesting that factors other than Ca2+ and CM content can affect the mechanochemical properties of BB myosin-I.
format Text
id pubmed-2119657
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21196572008-05-01 Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry J Cell Biol Articles We examined the Ca(2+)-dependent regulation of brush border (BB) myosin- I by probing the possible roles of the calmodulin (CM) light chains. BB myosin-I MgATPase activity, sensitivity to chymotryptic digestion, and mechanochemical properties were assessed using 1-10 microM Ca2+ and in the presence of exogenously added CM since it has been proposed that this myosin is regulated by calcium-induced CM dissociation from the 119-kD heavy chain. Each of these BB myosin-I properties were dramatically altered by the same threshold of 2-3 microM Ca2+. Enzymatically active NH2-terminal proteolytic fragments of BB myosin-I which lack the CM binding domains (the 78-kD peptide) differ from CM- containing peptides in that the former is completely insensitive to Ca2+. Furthermore, the 78-kD peptide exhibits high levels of MgATPase activity which are comparable to that observed for BB myosin-I in the presence of Ca2+. This suggests that Ca2+ regulates BB myosin-I MgATPase by binding directly to the CM light chains, and that CM acts to repress endogenous MgATPase activity. Ca(2+)-induced CM dissociation from BB myosin-I can be prevented by the addition of exogenous CM. Under these conditions Ca2+ causes a reversible slowing of motility. In contrast, in the absence of exogenous CM, motility is stopped by Ca2+. We demonstrate this reversible slowing is not due to the presence of inactive BB myosin-I molecules exerting a "braking" effect on motile filaments. However, we did observe Ca(2+)-independent slowing of motility by acidic phospholipids, suggesting that factors other than Ca2+ and CM content can affect the mechanochemical properties of BB myosin-I. The Rockefeller University Press 1993-08-01 /pmc/articles/PMC2119657/ /pubmed/8335688 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title_full Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title_fullStr Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title_full_unstemmed Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title_short Calcium-calmodulin and regulation of brush border myosin-I MgATPase and mechanochemistry
title_sort calcium-calmodulin and regulation of brush border myosin-i mgatpase and mechanochemistry
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119657/
https://www.ncbi.nlm.nih.gov/pubmed/8335688