Cargando…
Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts
Sphingosylphosphorylcholine (SPC), or lysophingomyelin, a wide-spectrum growth promoting agent for a variety of cell types (Desai, N. N., and S. Spiegel. 1991. Biochem. Biophys. Res. Comm. 181: 361-366), stimulates cellular proliferation of quiescent Swiss 3T3 fibroblasts to a greater extent than ot...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119705/ https://www.ncbi.nlm.nih.gov/pubmed/8389770 |
_version_ | 1782141323084562432 |
---|---|
collection | PubMed |
description | Sphingosylphosphorylcholine (SPC), or lysophingomyelin, a wide-spectrum growth promoting agent for a variety of cell types (Desai, N. N., and S. Spiegel. 1991. Biochem. Biophys. Res. Comm. 181: 361-366), stimulates cellular proliferation of quiescent Swiss 3T3 fibroblasts to a greater extent than other known growth factors or than the structurally related molecules, sphingosine and sphingosine-1- phosphate. SPC potentiated the mitogenic effect of an activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate, and did not compete with phorbol esters for binding to protein kinase C in intact Swiss 3T3 fibroblasts. However, downregulation of protein kinase C, by prolonged treatment with phorbol ester, reduced, but did not eliminate, the ability of SPC to stimulate DNA synthesis, indicating that SPC may act via both protein kinase C-dependent and -independent signaling pathways. SPC induced a rapid rise in intracellular free calcium ([Ca2+]i) in viable 3T3 fibroblasts determined with a digital imaging system. Although the increases in [Ca2+]i were observed even in the absence of calcium in the external medium, no increase in the levels of inositol phosphates could be detected in response to mitogenic concentrations of SPC. Furthermore, in contrast to sphingosine or sphingosine-1-phosphate, the mitogenic effect of SPC was not accompanied by increases in phosphatidic acid levels or changes in cAMP levels. SPC, but not sphingosine or sphingosine-1-phosphate, stimulates the release of arachidonic acid. Therefore, the ability of SPC to act an extremely potent mitogen may be due to activation of signaling pathway(s) distinct from those used by sphingosine or sphingosine-1- phosphate. |
format | Text |
id | pubmed-2119705 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21197052008-05-01 Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts J Cell Biol Articles Sphingosylphosphorylcholine (SPC), or lysophingomyelin, a wide-spectrum growth promoting agent for a variety of cell types (Desai, N. N., and S. Spiegel. 1991. Biochem. Biophys. Res. Comm. 181: 361-366), stimulates cellular proliferation of quiescent Swiss 3T3 fibroblasts to a greater extent than other known growth factors or than the structurally related molecules, sphingosine and sphingosine-1- phosphate. SPC potentiated the mitogenic effect of an activator of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate, and did not compete with phorbol esters for binding to protein kinase C in intact Swiss 3T3 fibroblasts. However, downregulation of protein kinase C, by prolonged treatment with phorbol ester, reduced, but did not eliminate, the ability of SPC to stimulate DNA synthesis, indicating that SPC may act via both protein kinase C-dependent and -independent signaling pathways. SPC induced a rapid rise in intracellular free calcium ([Ca2+]i) in viable 3T3 fibroblasts determined with a digital imaging system. Although the increases in [Ca2+]i were observed even in the absence of calcium in the external medium, no increase in the levels of inositol phosphates could be detected in response to mitogenic concentrations of SPC. Furthermore, in contrast to sphingosine or sphingosine-1-phosphate, the mitogenic effect of SPC was not accompanied by increases in phosphatidic acid levels or changes in cAMP levels. SPC, but not sphingosine or sphingosine-1-phosphate, stimulates the release of arachidonic acid. Therefore, the ability of SPC to act an extremely potent mitogen may be due to activation of signaling pathway(s) distinct from those used by sphingosine or sphingosine-1- phosphate. The Rockefeller University Press 1993-06-02 /pmc/articles/PMC2119705/ /pubmed/8389770 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title | Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title_full | Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title_fullStr | Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title_full_unstemmed | Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title_short | Signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in Swiss 3T3 fibroblasts |
title_sort | signaling pathways for sphingosylphosphorylcholine-mediated mitogenesis in swiss 3t3 fibroblasts |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119705/ https://www.ncbi.nlm.nih.gov/pubmed/8389770 |