Cargando…
Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading
To learn more about the possible role of the coated pits endocytic pathway in cell adhesion, we studied attachment and spreading of fibroblasts whose coated pits were disrupted by depletion of intercellular potassium. Fibroblasts incubated in suspension in potassium-free medium lost 80% of their int...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119743/ https://www.ncbi.nlm.nih.gov/pubmed/8449988 |
_version_ | 1782141331926155264 |
---|---|
collection | PubMed |
description | To learn more about the possible role of the coated pits endocytic pathway in cell adhesion, we studied attachment and spreading of fibroblasts whose coated pits were disrupted by depletion of intercellular potassium. Fibroblasts incubated in suspension in potassium-free medium lost 80% of their intracellular potassium within 10 min and showed disrupted coated pits based on fluorescence staining of clathrin. Potassium-depleted cells attached and spread on fibronectin-coated substrata over the same time course (15 min-2 h) as control cells. Unlike controls, however, potassium-depleted fibroblasts attained a radial morphology with circumferentially organized actin filament bundles and were unable to make the transition to a polarized morphology with stress fibers. In the radially spread fibroblasts, fibronectin receptors and vinculin colocalized in focal adhesion sites and appeared to be membrane insertion points for circumferentially arranged actin filament bundles, but these sites were much smaller than the focal adhesion plaques in polarized cells. The effects of potassium depletion on cell adhesion were reversible. Within 1 h after switching K(+)-depleted fibroblasts to medium containing KCl, cells developed a polarized morphology with actin stress fibers inserting into focal adhesion plaques. Coated pits also reformed on the cell surface during this time. Because formation of focal adhesion plaques preceded reappearance of clathrin-coated pits at the cell margins, it seems unlikely that coated pits play a direct role in adhesion plaque assembly. Polarization of fibroblasts upon addition of KCl was inhibited by ouabain showing that intracellular potassium was required for activity. Polarization also was inhibited when potassium-depleted cells were switched to potassium-containing medium under hypertonic or acidified conditions, both of which have been shown to inhibit receptor- mediated endocytosis. Our results suggest that the coated pit endocytic pathway is not required for initial attachment, spreading, and formation of focal adhesions by fibroblasts, but may play a role in cell polarization. |
format | Text |
id | pubmed-2119743 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1993 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21197432008-05-01 Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading J Cell Biol Articles To learn more about the possible role of the coated pits endocytic pathway in cell adhesion, we studied attachment and spreading of fibroblasts whose coated pits were disrupted by depletion of intercellular potassium. Fibroblasts incubated in suspension in potassium-free medium lost 80% of their intracellular potassium within 10 min and showed disrupted coated pits based on fluorescence staining of clathrin. Potassium-depleted cells attached and spread on fibronectin-coated substrata over the same time course (15 min-2 h) as control cells. Unlike controls, however, potassium-depleted fibroblasts attained a radial morphology with circumferentially organized actin filament bundles and were unable to make the transition to a polarized morphology with stress fibers. In the radially spread fibroblasts, fibronectin receptors and vinculin colocalized in focal adhesion sites and appeared to be membrane insertion points for circumferentially arranged actin filament bundles, but these sites were much smaller than the focal adhesion plaques in polarized cells. The effects of potassium depletion on cell adhesion were reversible. Within 1 h after switching K(+)-depleted fibroblasts to medium containing KCl, cells developed a polarized morphology with actin stress fibers inserting into focal adhesion plaques. Coated pits also reformed on the cell surface during this time. Because formation of focal adhesion plaques preceded reappearance of clathrin-coated pits at the cell margins, it seems unlikely that coated pits play a direct role in adhesion plaque assembly. Polarization of fibroblasts upon addition of KCl was inhibited by ouabain showing that intracellular potassium was required for activity. Polarization also was inhibited when potassium-depleted cells were switched to potassium-containing medium under hypertonic or acidified conditions, both of which have been shown to inhibit receptor- mediated endocytosis. Our results suggest that the coated pit endocytic pathway is not required for initial attachment, spreading, and formation of focal adhesions by fibroblasts, but may play a role in cell polarization. The Rockefeller University Press 1993-03-02 /pmc/articles/PMC2119743/ /pubmed/8449988 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title | Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title_full | Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title_fullStr | Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title_full_unstemmed | Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title_short | Depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
title_sort | depletion of intracellular potassium disrupts coated pits and reversibly inhibits cell polarization during fibroblast spreading |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119743/ https://www.ncbi.nlm.nih.gov/pubmed/8449988 |