Cargando…
A novel LFA-1 activation epitope maps to the I domain
A panel of 21 alpha-subunit (CD11a) and 10 beta-subunit (CD18) anti-LFA- 1 mAbs was screened for ability to activate LFA-1. A single anti-CD11a mAb, MEM-83, was identified which was able to directly induce the binding of T cells to purified ICAM-1 immobilized on plastic. This ICAM- 1 binding could b...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1993
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119757/ https://www.ncbi.nlm.nih.gov/pubmed/7680657 |
Sumario: | A panel of 21 alpha-subunit (CD11a) and 10 beta-subunit (CD18) anti-LFA- 1 mAbs was screened for ability to activate LFA-1. A single anti-CD11a mAb, MEM-83, was identified which was able to directly induce the binding of T cells to purified ICAM-1 immobilized on plastic. This ICAM- 1 binding could be achieved by monovalent Fab fragments of mAb MEM-83 at concentrations equivalent to whole antibody, was associated with appearance of the "activation reporter" epitope detected by mAb 24, and was completely inhibited by anti-ICAM-1 and LFA-1 blocking mAbs. The epitope recognized by mAb MEM-83 was distinct from that recognized by mAb NKI-L16, an anti-CD11a mAb previously reported to induce LFA-1 activation, in that it was constitutively present on freshly isolated peripheral blood mononuclear cells and was not divalent cation dependent for expression. The ICAM-1 binding activity induced by mAb MEM-83 was, however, dependent on the presence of Mg2+ divalent cations. Using an in vitro-translated CD11a cDNA deletion series, we have mapped the MEM-83 activation epitope to the "I" domain of the LFA- 1 alpha subunit. These studies have therefore identified a novel LFA-1 activation epitope mapping to the I domain of LFA-1, thereby implicating this domain in the regulation of LFA-1 binding to ICAM-1. |
---|