Cargando…

Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins

The genetic transformation of the higher plant Nicotiana plumbaginifolia to express the protein apoaequorin has recently been used as a method to measure cytosolic free calcium ([Ca2+]i) changes within intact living plants (Knight, M. R., A. K. Campbell, S. M. Smith, and A. J. Trewavas. 1991. Nature...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119763/
https://www.ncbi.nlm.nih.gov/pubmed/8458875
_version_ 1782141336664670208
collection PubMed
description The genetic transformation of the higher plant Nicotiana plumbaginifolia to express the protein apoaequorin has recently been used as a method to measure cytosolic free calcium ([Ca2+]i) changes within intact living plants (Knight, M. R., A. K. Campbell, S. M. Smith, and A. J. Trewavas. 1991. Nature (Lond.). 352:524-526; Knight, M. R., S. M. Smith, and A. J. Trewavas. 1992. Proc. Natl. Acad. Sci. USA. 89:4967-4971). After treatment with the luminophore coelenterazine the calcium-activated photoprotein aequorin is formed within the cytosol of the cells of the transformed plants. Aequorin emits blue light in a dose-dependent manner upon binding free calcium (Ca2+). Thus the quantification of light emission from coelenterazine-treated transgenic plant cells provides a direct measurement of [Ca2+]i. In this paper, by using a highly sensitive photon-counting camera connected to a light microscope, we have for the first time imaged changes in [Ca2+]i in response to cold-shock, touch and wounding in different tissues of transgenic Nicotiana plants. Using this approach we have been able to observe tissue-specific [Ca2+]i responses. We also demonstrate how this method can be tailored by the use of different coelenterazine analogues which endow the resultant aequorin (termed semi-synthetic recombinant aeqorin) with different properties. By using h-coelenterazine, which renders the recombinant aequorin reporter more sensitive to Ca2+, we have been able to image relatively small changes in [Ca2+]i in response to touch and wounding: changes not detectable when standard coelenterazine is used. Reconstitution of recombinant aequorin with another coelenterazine analogue (e-coelenterazine) produces a semi-synthetic recombinant aequorin with a bimodal spectrum of luminescence emission. The ratio of luminescence at two wavelengths (421 and 477 nm) provides a simpler method for quantification of [Ca2+]i in vivo than was previously available. This approach has the benefit that no information is needed on the amount of expression, reconstitution or consumption of aequorin which is normally required for calibration with aequorin.
format Text
id pubmed-2119763
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21197632008-05-01 Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins J Cell Biol Articles The genetic transformation of the higher plant Nicotiana plumbaginifolia to express the protein apoaequorin has recently been used as a method to measure cytosolic free calcium ([Ca2+]i) changes within intact living plants (Knight, M. R., A. K. Campbell, S. M. Smith, and A. J. Trewavas. 1991. Nature (Lond.). 352:524-526; Knight, M. R., S. M. Smith, and A. J. Trewavas. 1992. Proc. Natl. Acad. Sci. USA. 89:4967-4971). After treatment with the luminophore coelenterazine the calcium-activated photoprotein aequorin is formed within the cytosol of the cells of the transformed plants. Aequorin emits blue light in a dose-dependent manner upon binding free calcium (Ca2+). Thus the quantification of light emission from coelenterazine-treated transgenic plant cells provides a direct measurement of [Ca2+]i. In this paper, by using a highly sensitive photon-counting camera connected to a light microscope, we have for the first time imaged changes in [Ca2+]i in response to cold-shock, touch and wounding in different tissues of transgenic Nicotiana plants. Using this approach we have been able to observe tissue-specific [Ca2+]i responses. We also demonstrate how this method can be tailored by the use of different coelenterazine analogues which endow the resultant aequorin (termed semi-synthetic recombinant aeqorin) with different properties. By using h-coelenterazine, which renders the recombinant aequorin reporter more sensitive to Ca2+, we have been able to image relatively small changes in [Ca2+]i in response to touch and wounding: changes not detectable when standard coelenterazine is used. Reconstitution of recombinant aequorin with another coelenterazine analogue (e-coelenterazine) produces a semi-synthetic recombinant aequorin with a bimodal spectrum of luminescence emission. The ratio of luminescence at two wavelengths (421 and 477 nm) provides a simpler method for quantification of [Ca2+]i in vivo than was previously available. This approach has the benefit that no information is needed on the amount of expression, reconstitution or consumption of aequorin which is normally required for calibration with aequorin. The Rockefeller University Press 1993-04-01 /pmc/articles/PMC2119763/ /pubmed/8458875 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title_full Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title_fullStr Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title_full_unstemmed Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title_short Imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
title_sort imaging calcium dynamics in living plants using semi-synthetic recombinant aequorins
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119763/
https://www.ncbi.nlm.nih.gov/pubmed/8458875