Cargando…

The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor

In previous work we characterized a brain derived collapsing factor that induces the collapse of dorsal root ganglion growth cones in culture (Raper and Kapfhammer, 1990). To determine how the growth cone cytoskeleton is rearranged during collapse, we have compared the distributions of F-actin and m...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119785/
https://www.ncbi.nlm.nih.gov/pubmed/8491778
_version_ 1782141341851975680
collection PubMed
description In previous work we characterized a brain derived collapsing factor that induces the collapse of dorsal root ganglion growth cones in culture (Raper and Kapfhammer, 1990). To determine how the growth cone cytoskeleton is rearranged during collapse, we have compared the distributions of F-actin and microtubules in normal and partially collapsed growth cones. The relative concentration of F-actin as compared to all proteins can be measured in growth cones by rationing the intensity of rhodamine-phalloidin staining of F-actin to the intensity of a general protein stain. The relative concentration of F- actin is decreased by about one half in growth cones exposed to collapsing factor for five minutes, a time at which they are just beginning to collapse. During this period the relative concentration of F-actin in the leading edges of growth cones decreases dramatically while the concentration of F-actin in the centers decreases little. These results suggest that collapse is associated with a net loss of F- actin at the leading edge. The distributions of microtubules in normal and collapsing factor treated growth cones were examined with antibodies to tyrosinated and detyrosinated isoforms of alpha-tubulin. The tyrosinated form is found in newly polymerized microtubules while the detyrosinated form is not. The relative proximal-distal distributions of these isoforms are not altered during collapse, suggesting that rates of microtubule polymerization and depolymerization are not greatly affected by the presence of collapsing factor. An analysis of the distributions of microtubules before and after collapse suggests that microtubules are rearranged, but their polymerization state is unaffected during collapse. These results are consistent with the hypothesis that the brain derived collapsing factor has little effect on microtubule polymerization or depolymerization. Instead it appears to induce a net loss of F-actin at the leading edge of the growth cone.
format Text
id pubmed-2119785
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21197852008-05-01 The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor J Cell Biol Articles In previous work we characterized a brain derived collapsing factor that induces the collapse of dorsal root ganglion growth cones in culture (Raper and Kapfhammer, 1990). To determine how the growth cone cytoskeleton is rearranged during collapse, we have compared the distributions of F-actin and microtubules in normal and partially collapsed growth cones. The relative concentration of F-actin as compared to all proteins can be measured in growth cones by rationing the intensity of rhodamine-phalloidin staining of F-actin to the intensity of a general protein stain. The relative concentration of F- actin is decreased by about one half in growth cones exposed to collapsing factor for five minutes, a time at which they are just beginning to collapse. During this period the relative concentration of F-actin in the leading edges of growth cones decreases dramatically while the concentration of F-actin in the centers decreases little. These results suggest that collapse is associated with a net loss of F- actin at the leading edge. The distributions of microtubules in normal and collapsing factor treated growth cones were examined with antibodies to tyrosinated and detyrosinated isoforms of alpha-tubulin. The tyrosinated form is found in newly polymerized microtubules while the detyrosinated form is not. The relative proximal-distal distributions of these isoforms are not altered during collapse, suggesting that rates of microtubule polymerization and depolymerization are not greatly affected by the presence of collapsing factor. An analysis of the distributions of microtubules before and after collapse suggests that microtubules are rearranged, but their polymerization state is unaffected during collapse. These results are consistent with the hypothesis that the brain derived collapsing factor has little effect on microtubule polymerization or depolymerization. Instead it appears to induce a net loss of F-actin at the leading edge of the growth cone. The Rockefeller University Press 1993-05-02 /pmc/articles/PMC2119785/ /pubmed/8491778 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title_full The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title_fullStr The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title_full_unstemmed The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title_short The organization of F-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
title_sort organization of f-actin and microtubules in growth cones exposed to a brain-derived collapsing factor
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119785/
https://www.ncbi.nlm.nih.gov/pubmed/8491778