Cargando…

Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression

Phenotypically altered C2 myoblast cells, generated by the stable transfection of human nonmuscle actin genes (Schevzov, G., C. Lloyd, and P. Gunning. 1992. J. Cell Biol. 117:775-786), exhibit a differential pattern of tropomyosin cellular organization and isoform gene expression. The beta-actin tra...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119789/
https://www.ncbi.nlm.nih.gov/pubmed/8491774
_version_ 1782141342794645504
collection PubMed
description Phenotypically altered C2 myoblast cells, generated by the stable transfection of human nonmuscle actin genes (Schevzov, G., C. Lloyd, and P. Gunning. 1992. J. Cell Biol. 117:775-786), exhibit a differential pattern of tropomyosin cellular organization and isoform gene expression. The beta-actin transfectants displaying a threefold increase in the cell surface area, showed no significant changes in the pattern of organization of the high M(r) tropomyosin isoform, Tm 2, or the low M(r) tropomyosin isoform, Tm 5. In contrast, the gamma- and beta sm-actin gene transfectants, exhibiting a twofold decrease in the cell surface area, had an altered organization of Tm 2 but not Tm 5. In these actin transfectants, Tm 2 did not preferentially segregate into stress fiber-like structures and the intensity of staining was greatly diminished. Conversely, a well-defined stress fiber-like organization of Tm 5 was observed. The pattern of organization of these tropomyosin isoforms correlated with their expression such that a profound decrease in Tm 2 expression was observed both at the transcript and protein levels, whereas Tm 5 remained relatively unchanged. These results suggest that relative changes in nonmuscle actin gene expression can affect the organization and expression of tropomyosin in an isoform specific manner. Furthermore, this apparent direct link observed between actin and tropomyosin expression suggests that nonpharmacological signals originating in the cytoskeleton can regulate cytoarchitectural gene expression.
format Text
id pubmed-2119789
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21197892008-05-01 Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression J Cell Biol Articles Phenotypically altered C2 myoblast cells, generated by the stable transfection of human nonmuscle actin genes (Schevzov, G., C. Lloyd, and P. Gunning. 1992. J. Cell Biol. 117:775-786), exhibit a differential pattern of tropomyosin cellular organization and isoform gene expression. The beta-actin transfectants displaying a threefold increase in the cell surface area, showed no significant changes in the pattern of organization of the high M(r) tropomyosin isoform, Tm 2, or the low M(r) tropomyosin isoform, Tm 5. In contrast, the gamma- and beta sm-actin gene transfectants, exhibiting a twofold decrease in the cell surface area, had an altered organization of Tm 2 but not Tm 5. In these actin transfectants, Tm 2 did not preferentially segregate into stress fiber-like structures and the intensity of staining was greatly diminished. Conversely, a well-defined stress fiber-like organization of Tm 5 was observed. The pattern of organization of these tropomyosin isoforms correlated with their expression such that a profound decrease in Tm 2 expression was observed both at the transcript and protein levels, whereas Tm 5 remained relatively unchanged. These results suggest that relative changes in nonmuscle actin gene expression can affect the organization and expression of tropomyosin in an isoform specific manner. Furthermore, this apparent direct link observed between actin and tropomyosin expression suggests that nonpharmacological signals originating in the cytoskeleton can regulate cytoarchitectural gene expression. The Rockefeller University Press 1993-05-02 /pmc/articles/PMC2119789/ /pubmed/8491774 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title_full Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title_fullStr Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title_full_unstemmed Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title_short Differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
title_sort differential regulation of tropomyosin isoform organization and gene expression in response to altered actin gene expression
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119789/
https://www.ncbi.nlm.nih.gov/pubmed/8491774