Cargando…

Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin

To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfec...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119803/
https://www.ncbi.nlm.nih.gov/pubmed/7691827
_version_ 1782141346002239488
collection PubMed
description To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfection of wild-type or mutated alpha 4 into K562 cells yielded comparable expression levels and immunoprecipitation profiles. However, for all three alpha 4 mutants, adhesion to CS1/fibronectin was greatly diminished in either the presence or absence of the stimulatory anti-beta 1 mAb TS2/16. Constitutive adhesion to vascular cell adhesion molecule (VCAM) 1 was also diminished but, unlike CS1 adhesion, was restored upon TS2/16 stimulation. In contrast, adhesion to the bacterial protein invasin was minimally affected by any of the three mutations. For each of the mutants, the order of preference for divalent cations was unchanged compared to wild-type alpha 4, on CS1/fibronectin (Mn2+ > Mg2+ > Ca2+), on VCAM-1 (Mn2+ > Mg2+ = Ca2+) and on invasin (Mg2+ = Ca2+). However for the three mutants, the efficiency of divalent cation utilization was decreased. On VCAM-1, 68-108 microM Mn2+ was required to support half-maximal adhesion for the mutants compared with 14-18 microM for wild-type alpha 4. These results indicate (a) that three different ligands for VLA-4 show widely differing sensitivities to mutations within putative divalent cation sites, and (b) each of the three putative divalent cation sites in alpha 4 have comparable functional importance with respect to both divalent cation usage and cell adhesion.
format Text
id pubmed-2119803
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21198032008-05-01 Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin J Cell Biol Articles To investigate the functional significance of putative integrin divalent cation binding sites, several mutated alpha 4 subunit cDNAs were constructed. Mutants contained the conservative substitution of Glu for Asp or Asn at the third position in each of three putative divalent cation sites. Transfection of wild-type or mutated alpha 4 into K562 cells yielded comparable expression levels and immunoprecipitation profiles. However, for all three alpha 4 mutants, adhesion to CS1/fibronectin was greatly diminished in either the presence or absence of the stimulatory anti-beta 1 mAb TS2/16. Constitutive adhesion to vascular cell adhesion molecule (VCAM) 1 was also diminished but, unlike CS1 adhesion, was restored upon TS2/16 stimulation. In contrast, adhesion to the bacterial protein invasin was minimally affected by any of the three mutations. For each of the mutants, the order of preference for divalent cations was unchanged compared to wild-type alpha 4, on CS1/fibronectin (Mn2+ > Mg2+ > Ca2+), on VCAM-1 (Mn2+ > Mg2+ = Ca2+) and on invasin (Mg2+ = Ca2+). However for the three mutants, the efficiency of divalent cation utilization was decreased. On VCAM-1, 68-108 microM Mn2+ was required to support half-maximal adhesion for the mutants compared with 14-18 microM for wild-type alpha 4. These results indicate (a) that three different ligands for VLA-4 show widely differing sensitivities to mutations within putative divalent cation sites, and (b) each of the three putative divalent cation sites in alpha 4 have comparable functional importance with respect to both divalent cation usage and cell adhesion. The Rockefeller University Press 1993-10-01 /pmc/articles/PMC2119803/ /pubmed/7691827 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title_full Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title_fullStr Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title_full_unstemmed Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title_short Mutation of putative divalent cation sites in the alpha 4 subunit of the integrin VLA-4: distinct effects on adhesion to CS1/fibronectin, VCAM-1, and invasin
title_sort mutation of putative divalent cation sites in the alpha 4 subunit of the integrin vla-4: distinct effects on adhesion to cs1/fibronectin, vcam-1, and invasin
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119803/
https://www.ncbi.nlm.nih.gov/pubmed/7691827