Cargando…

Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis

Subtractive immunization allowed the isolation and characterization of monoclonal antibodies that specifically inhibit metastasis but not proliferation of highly metastatic human tumor cells. The tolerizing agent cyclophosphamide was used to suppress the immune system in mice to dominant immunodeter...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119848/
https://www.ncbi.nlm.nih.gov/pubmed/8376467
_version_ 1782141356474368000
collection PubMed
description Subtractive immunization allowed the isolation and characterization of monoclonal antibodies that specifically inhibit metastasis but not proliferation of highly metastatic human tumor cells. The tolerizing agent cyclophosphamide was used to suppress the immune system in mice to dominant immunodeterminants present on a non-metastatic variant (M-) of the human epidermoid carcinoma cell line (HEp3). Mice were then inoculated with a highly metastatic variant (M+) of HEp3 to enhance an immune response to antigenic determinants present on metastatic cells. Hybridomas were generated and screened by ELISA for differential reactivity to M+ HEp3 over M- HEp3 cells. This experimental approach, termed subtractive immunization (S.I.), was compared to a control immunization protocol, which eliminated the cyclophosphamide treatment. The S.I. protocol resulted in an eight-fold increase in the proportion of mAbs that react with molecules enriched on the surface of the M+ HEp3 cells. Two of the mAbs derived from the S.I. protocol, designated DM12-4 and 1A5, were purified and examined for their effect in a metastasis model system in which chick embryos are transplanted with primary HEp3 tumors. Purified mAbs DM12-4 and 1A5, inoculated i.v. into the embryos, inhibited spontaneous metastasis of HEp3 cells by 86 and 90%, respectively. The mAbs are specifically anti-metastatic in that they have no effect on the growth of HEp3 cells in vitro nor did they inhibit primary tumor growth in vivo. The mAbs recognize M+ HEp3 cell surface molecules of 55 kD and 29 kD, respectively. These data demonstrate that the S.I. protocol can be used for the development of unique mAbs that are reactive with antigenic determinants whose expression is elevated on metastatic human tumor cells and which function mechanistically in the metastatic cascade.
format Text
id pubmed-2119848
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21198482008-05-01 Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis J Cell Biol Articles Subtractive immunization allowed the isolation and characterization of monoclonal antibodies that specifically inhibit metastasis but not proliferation of highly metastatic human tumor cells. The tolerizing agent cyclophosphamide was used to suppress the immune system in mice to dominant immunodeterminants present on a non-metastatic variant (M-) of the human epidermoid carcinoma cell line (HEp3). Mice were then inoculated with a highly metastatic variant (M+) of HEp3 to enhance an immune response to antigenic determinants present on metastatic cells. Hybridomas were generated and screened by ELISA for differential reactivity to M+ HEp3 over M- HEp3 cells. This experimental approach, termed subtractive immunization (S.I.), was compared to a control immunization protocol, which eliminated the cyclophosphamide treatment. The S.I. protocol resulted in an eight-fold increase in the proportion of mAbs that react with molecules enriched on the surface of the M+ HEp3 cells. Two of the mAbs derived from the S.I. protocol, designated DM12-4 and 1A5, were purified and examined for their effect in a metastasis model system in which chick embryos are transplanted with primary HEp3 tumors. Purified mAbs DM12-4 and 1A5, inoculated i.v. into the embryos, inhibited spontaneous metastasis of HEp3 cells by 86 and 90%, respectively. The mAbs are specifically anti-metastatic in that they have no effect on the growth of HEp3 cells in vitro nor did they inhibit primary tumor growth in vivo. The mAbs recognize M+ HEp3 cell surface molecules of 55 kD and 29 kD, respectively. These data demonstrate that the S.I. protocol can be used for the development of unique mAbs that are reactive with antigenic determinants whose expression is elevated on metastatic human tumor cells and which function mechanistically in the metastatic cascade. The Rockefeller University Press 1993-09-02 /pmc/articles/PMC2119848/ /pubmed/8376467 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title_full Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title_fullStr Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title_full_unstemmed Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title_short Subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
title_sort subtractive immunization yields monoclonal antibodies that specifically inhibit metastasis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119848/
https://www.ncbi.nlm.nih.gov/pubmed/8376467