Cargando…

Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus

NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1993
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119886/
https://www.ncbi.nlm.nih.gov/pubmed/8245119
_version_ 1782141365498413056
collection PubMed
description NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/arginine-rich COOH terminus. In this study we show that NSR1 itself has a bipartite nuclear localization sequence. Deletion of either basic amino acid stretch results in the mislocation of NSR1 to the cytoplasm. We further demonstrate that either of two regions, the NH2 terminus or both RNA recognition motifs, are sufficient to localize a bacterial protein, beta-galactosidase, to the nucleolus. Intensive deletion analysis has further defined a specific acidic/serine-rich region within the NH2 terminus as necessary for nucleolar accumulation rather than nucleolar targeting. In addition, deletion of either RNA recognition motif or point mutations in one of the RNP consensus octamers results in the mislocalization of a fusion protein within the nucleus. Although the glycine/arginine-rich region in the COOH terminus is not sufficient to bring beta-galactosidase to the nucleolus, our studies show that this domain is necessary for nucleolar accumulation when an RNP consensus octamer in one of the RNA recognition motifs is mutated. Our findings are consistent with the notion that nucleolar localization is a result of the binding interactions of various domains of NSR1 within the nucleolus rather than the presence of a specific nucleolar targeting signal.
format Text
id pubmed-2119886
institution National Center for Biotechnology Information
language English
publishDate 1993
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21198862008-05-01 Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus J Cell Biol Articles NSR1, a 67-kD nucleolar protein, was originally identified in our laboratory as a nuclear localization signal binding protein, and has subsequently been found to be involved in ribosome biogenesis. NSR1 has three regions: an acidic/serine-rich NH2 terminus, two RNA recognition motifs, and a glycine/arginine-rich COOH terminus. In this study we show that NSR1 itself has a bipartite nuclear localization sequence. Deletion of either basic amino acid stretch results in the mislocation of NSR1 to the cytoplasm. We further demonstrate that either of two regions, the NH2 terminus or both RNA recognition motifs, are sufficient to localize a bacterial protein, beta-galactosidase, to the nucleolus. Intensive deletion analysis has further defined a specific acidic/serine-rich region within the NH2 terminus as necessary for nucleolar accumulation rather than nucleolar targeting. In addition, deletion of either RNA recognition motif or point mutations in one of the RNP consensus octamers results in the mislocalization of a fusion protein within the nucleus. Although the glycine/arginine-rich region in the COOH terminus is not sufficient to bring beta-galactosidase to the nucleolus, our studies show that this domain is necessary for nucleolar accumulation when an RNP consensus octamer in one of the RNA recognition motifs is mutated. Our findings are consistent with the notion that nucleolar localization is a result of the binding interactions of various domains of NSR1 within the nucleolus rather than the presence of a specific nucleolar targeting signal. The Rockefeller University Press 1993-12-01 /pmc/articles/PMC2119886/ /pubmed/8245119 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title_full Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title_fullStr Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title_full_unstemmed Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title_short Multiple regions of NSR1 are sufficient for accumulation of a fusion protein within the nucleolus
title_sort multiple regions of nsr1 are sufficient for accumulation of a fusion protein within the nucleolus
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119886/
https://www.ncbi.nlm.nih.gov/pubmed/8245119