Cargando…
Matrix-bound thrombospondin promotes angiogenesis in vitro
Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from expl...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119887/ https://www.ncbi.nlm.nih.gov/pubmed/7507491 |
_version_ | 1782141365731196928 |
---|---|
collection | PubMed |
description | Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from explants of rat aorta. This serum-free model allowed us to study the angiogenic effect of TSP without the interference of attachment and growth factors present in serum. TSP promoted dose- dependent growth of microvessels and fibroblast-like cells. The number of microvessels in TSP-containing collagen and fibrin gels increased by 136 and 94%, respectively. The TSP effect was due in part to cell proliferation since a 97% increase in [3H]thymidine incorporation by the aortic culture was observed. The effect was TSP-specific because TSP preparations adsorbed with anti-TSP antibody showed no activity. TSP did not promote angiogenesis directly since no TSP-dependent growth of isolated endothelial cells could be demonstrated. Rather TSP directly stimulated the growth of aortic culture-derived myofibroblasts which in turn promoted microvessel formation when cocultured with the aortic explants. Angiogenesis was also stimulated by myofibroblast- conditioned medium. Partial characterization of the conditioned medium suggests that the angiogenic activity is due to heparin-binding protein(s) with molecular weight > 30 kD. These results indicate that matrix-bound TSP can indirectly promote microvessel formation through growth-promoting effects on myofibroblasts and that TSP may be an important stimulator of angiogenesis and wound healing in vivo. |
format | Text |
id | pubmed-2119887 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1994 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21198872008-05-01 Matrix-bound thrombospondin promotes angiogenesis in vitro J Cell Biol Articles Thrombospondin (TSP) is a multidomain adhesive protein postulated to play an important role in the biological activity of the extracellular matrix. To test this hypothesis, TSP-containing fibrin and collagen matrices were evaluated for their capacity to support angiogenesis and cell growth from explants of rat aorta. This serum-free model allowed us to study the angiogenic effect of TSP without the interference of attachment and growth factors present in serum. TSP promoted dose- dependent growth of microvessels and fibroblast-like cells. The number of microvessels in TSP-containing collagen and fibrin gels increased by 136 and 94%, respectively. The TSP effect was due in part to cell proliferation since a 97% increase in [3H]thymidine incorporation by the aortic culture was observed. The effect was TSP-specific because TSP preparations adsorbed with anti-TSP antibody showed no activity. TSP did not promote angiogenesis directly since no TSP-dependent growth of isolated endothelial cells could be demonstrated. Rather TSP directly stimulated the growth of aortic culture-derived myofibroblasts which in turn promoted microvessel formation when cocultured with the aortic explants. Angiogenesis was also stimulated by myofibroblast- conditioned medium. Partial characterization of the conditioned medium suggests that the angiogenic activity is due to heparin-binding protein(s) with molecular weight > 30 kD. These results indicate that matrix-bound TSP can indirectly promote microvessel formation through growth-promoting effects on myofibroblasts and that TSP may be an important stimulator of angiogenesis and wound healing in vivo. The Rockefeller University Press 1994-01-01 /pmc/articles/PMC2119887/ /pubmed/7507491 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Matrix-bound thrombospondin promotes angiogenesis in vitro |
title | Matrix-bound thrombospondin promotes angiogenesis in vitro |
title_full | Matrix-bound thrombospondin promotes angiogenesis in vitro |
title_fullStr | Matrix-bound thrombospondin promotes angiogenesis in vitro |
title_full_unstemmed | Matrix-bound thrombospondin promotes angiogenesis in vitro |
title_short | Matrix-bound thrombospondin promotes angiogenesis in vitro |
title_sort | matrix-bound thrombospondin promotes angiogenesis in vitro |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119887/ https://www.ncbi.nlm.nih.gov/pubmed/7507491 |