Cargando…

Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores

Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119921/
https://www.ncbi.nlm.nih.gov/pubmed/8106546
_version_ 1782141373640605696
collection PubMed
description Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores.
format Text
id pubmed-2119921
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21199212008-05-01 Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores J Cell Biol Articles Teleost pigment cells (erythrophores and melanophores) are useful models for studying the regulation of rapid, microtubule-dependent organelle transport. Previous studies suggest that melanophores regulate the direction of pigment movements via changes in intracellular cAMP (Rozdzial and Haimo, 1986a; Sammak et al., 1992), whereas erythrophores may use calcium- (Ca(2+)-) based regulation (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). Despite these observations, there have been no direct measurements in intact erythrophores or any cell type correlating changes of intracellular free Ca2+ ([Ca2+]i) with organelle movements. Here we demonstrate that extracellular Ca2+ is necessary and that a Ca2+ influx via microinjection is sufficient to induce pigment aggregation in erythrophores, but not melanophores of squirrel fish. Using the Ca(2+)- sensitive indicator, Fura-2, we demonstrate that [Ca2+]i rises dramatically concomitant with aggregation of pigment granules in erythrophores, but not melanophores. In addition, we find that an erythrophore stimulated to aggregate pigment will immediately transmit a rise in [Ca2+]i to neighboring cells, suggesting that these cells are electrically coupled. Surprisingly, we find that a fall in [Ca2+]i is not sufficient to induce pigment dispersion in erythrophores, contrary to the findings obtained with the ionophore and lysed-cell models (Luby- Phelps and Porter, 1982; McNiven and Ward, 1988). We find that a rise in intracellular cAMP ([cAMP]i) induces pigment dispersion, and that this dispersive stimulus can be overridden by an aggregation stimulus, suggesting that both high [cAMP]i and low [Ca2+]i are necessary to produce pigment dispersion in erythrophores. The Rockefeller University Press 1994-02-02 /pmc/articles/PMC2119921/ /pubmed/8106546 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title_full Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title_fullStr Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title_full_unstemmed Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title_short Intracellular calcium and cAMP regulate directional pigment movements in teleost erythrophores
title_sort intracellular calcium and camp regulate directional pigment movements in teleost erythrophores
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119921/
https://www.ncbi.nlm.nih.gov/pubmed/8106546