Cargando…

Binding of pEL98 protein, an S100-related calcium-binding protein, to nonmuscle tropomyosin

The cDNA coding for mouse fibroblast tropomyosin isoform 2 (TM2) was placed into a bacterial expression vector to produce a fusion protein containing glutathione-S-transferase (GST) and TM2 (GST/TM2). Glutathione-Sepharose beads bearing GST/TM2 were incubated with [35S]methionine-labeled NIH 3T3 cel...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2119958/
https://www.ncbi.nlm.nih.gov/pubmed/8120097
Descripción
Sumario:The cDNA coding for mouse fibroblast tropomyosin isoform 2 (TM2) was placed into a bacterial expression vector to produce a fusion protein containing glutathione-S-transferase (GST) and TM2 (GST/TM2). Glutathione-Sepharose beads bearing GST/TM2 were incubated with [35S]methionine-labeled NIH 3T3 cell extracts and the materials bound to the fusion proteins were analyzed to identify proteins that interact with TM2. A protein of 10 kD was found to bind to GST/TM2, but not to GST. The binding of the 10-kD protein to GST/TM2 was dependent on the presence of Ca2+ and inhibited by molar excess of free TM2 in a competition assay. The 10-kD protein-binding site was mapped to the region spanning residues 39-107 on TM2 by using several COOH-terminal and NH2-terminal truncation mutants of TM2. The 10-kD protein was isolated from an extract of NIH 3T3 cells transformed by v-Ha-ras by affinity chromatography on a GST/TM2 truncation mutant followed by SDS- PAGE and electroelution. Partial amino acid sequence analysis of the purified 10-kD protein, two-dimensional polyacrylamide gel analysis and a binding experiment revealed that the 10-kD protein was identical to a calcium-binding protein derived from mRNA named pEL98 or 18A2 that is homologous to S100 protein. Immunoblot analysis of the distribution of the 10-kD protein in Triton-soluble and -insoluble fractions of NIH 3T3 cells revealed that some of the 10-kD protein was associated with the Triton-insoluble cytoskeletal residue in a Ca(2+)-dependent manner. Furthermore, immunofluorescent staining of NIH 3T3 cells showed that some of the 10-kD protein colocalized with nonmuscle TMs in microfilament bundles. These results suggest that some of the pEL98 protein interacts with microfilament-associated nonmuscle TMs in NIH 3T3 cells.