Cargando…

Glycosphingolipid antigens in cultured bovine brain microvascular endothelial cells: sulfoglucuronosyl paragloboside as a target of monoclonal IgM in demyelinative neuropathy [corrected] [published erratum appears in J Cell Biol 1994 Oct;127(1):265]

Since a number of anti-glycosphingolipid (GSL) antibody activities have been demonstrated in patients with various neurological disorders, the presence of common antigens between brain microvascular endothelial cells (BMECs) and the nervous tissues presents a potential mechanism for the penetration...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120097/
https://www.ncbi.nlm.nih.gov/pubmed/8027181
Descripción
Sumario:Since a number of anti-glycosphingolipid (GSL) antibody activities have been demonstrated in patients with various neurological disorders, the presence of common antigens between brain microvascular endothelial cells (BMECs) and the nervous tissues presents a potential mechanism for the penetration of macromolecules from the circulation to the nervous system parenchyma. We first investigated GSL composition of cultured bovine BMECs. Bovine BMECs express GM3(NeuAc) and GM3(NeuGc) as the major gangliosides, and GM1, GD1a, GD1b, GT1b, as well as sialyl paragloboside and sialyl lactosaminylparagloboside as the minor species. Sulfoglucuronosyl paragloboside was also found to be a component of the BMEC acidic GSL fraction, but its concentration was lower in older cultures. On the other hand, the amounts of neutral GSLs were extremely low, consisting primarily of glucosylceramide. In addition, we analyzed the effect of anti-SGPG IgM antibody obtained from a patient of demyelinative polyneuropathy with macroglobulinemia against cultured BMECs. Permeability studies utilizing cocultured BMEC monolayers and rat astrocytes revealed that the antibody facilitated the leakage of [carboxy-14C]-inulin and 125I-labeled human IgM through BMEC monolayers. A direct cytotoxicity of this antibody against BMECs was also shown by a leakage study using [51Cr]-incorporated BMECs. This cytotoxicity depended on the concentration of the IgM antibody, and was almost completely blocked by preincubation with the pure antigen, sulfoglucuronosyl paragloboside. Our present study strongly supports the concept that immunological insults against BMECs induce the destruction or malfunction of the blood-nerve barrier, resulting in the penetration of the immunoglobulin molecule to attach peripheral nerve parenchyma.