Cargando…
Structural requirements and sequence motifs for polarized sorting and endocytosis of LDL and Fc receptors in MDCK cells
In MDCK cells, basolateral sorting of most membrane proteins has been shown to depend on distinct cytoplasmic domain determinants. These signals can be divided into those which are related to signals for localization at clathrin-coated pits and those which are unrelated. The LDL receptor bears two t...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120116/ https://www.ncbi.nlm.nih.gov/pubmed/8051216 |
Sumario: | In MDCK cells, basolateral sorting of most membrane proteins has been shown to depend on distinct cytoplasmic domain determinants. These signals can be divided into those which are related to signals for localization at clathrin-coated pits and those which are unrelated. The LDL receptor bears two tyrosine-containing signals, one of each class, that can independently target receptors from the Golgi complex and from endosomes to the basolateral plasma membrane. We have now investigated the other structural features required for the activity of both determinants. We find that both depend, at least in part, on clusters of 1-3 acidic amino acids located on the COOH-terminal side of each tyrosine. While single residues adjacent to each tyrosine were also found to be critical, the two signals differed in that only the coated pit-unrelated signal could tolerate a phenylalanine in place of its tyrosine residue. We also found that the structural requirements for basolateral targeting of the "coated pit-related" signal were distinct from those required for rapid endocytosis. Apart from sharing a common tyrosine residue, no feature of the NPXY motif for coated pit localization was required for basolateral targeting. We also investigated basolateral targeting of the mouse macrophage Fc receptor (FcRII-B2) which contains a tyrosine-independent coated pit localization signal. Basolateral transport and endocytosis were found to depend on a common dileucine-type motif. Thus, basolateral targeting determinants, like coated pit domains, can contain either tyrosine- or di-leucine-containing signals. The amino acids in the vicinity of these motifs determine whether they function as determinants for endocytosis, basolateral targeting, or both. |
---|