Cargando…
Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors
To elucidate regulatory mechanism(s) underlying differentiation of osteoblasts, we examined involvement of helix-loop-helix (HLH)-type transcription factors in osteoblast-specific expression of a phenotypic marker gene which encodes osteocalcin, a major noncollagenous bone matrix protein, exclusivel...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1994
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120135/ https://www.ncbi.nlm.nih.gov/pubmed/8045940 |
_version_ | 1782141424400072704 |
---|---|
collection | PubMed |
description | To elucidate regulatory mechanism(s) underlying differentiation of osteoblasts, we examined involvement of helix-loop-helix (HLH)-type transcription factors in osteoblast-specific expression of a phenotypic marker gene which encodes osteocalcin, a major noncollagenous bone matrix protein, exclusively expressed in osteoblasts. Overexpression of a dominant negative HLH protein, Id-1, decreased the activity of the 1.1-kb osteocalcin gene promoter cotransfected into rat osteoblastic osteosarcoma ROS17/2.8 cells. Analysis of deletion mutants revealed that a 264-bp fragment of osteocalcin promoter (-198 to +66) was sufficient for the Id-1-dependent suppression. Furthermore, the activity of the same promoter fragment (-198 to +66) was enhanced when antisense Id-1 expression vector was cotransfected. This osteocalcin gene promoter region contains two sites of an E-box motif, a consensus binding site for HLH proteins, which we refer to as OCE1 (CACATG, at - 102) and OCE2 (CAGCTG, at -149), respectively. Mutagenesis in OCE1 but not OCE2 led to greater than 50% reduction in transcriptional activity of the osteocalcin gene promoter. Electrophoresis mobility shift assay indicated that factors in nuclear extracts prepared from ROS17/2.8 cells bound to the 30-bp oligonucleotide probe containing the E-box motif of OCE1. This binding was competed out by OCE1 oligonucleotide but neither by OCmE1 oligonucleotide in which E-box motif was mutated nor by OCE2. The OCE1-binding activity in the nuclear extracts of ROS17/2.8 cells was reduced by 70% when bacterially expressed Id-1 protein was added to the reaction mixture, suggesting the involvement of HLH proteins in the DNA/protein complex formation. In contrast to the osteoblast-like cells, OCE1-binding activity in the nuclear extracts of C3H10T1/2 fibroblasts was very low. However, when these fibroblasts were treated with recombinant human bone morphogenetic protein-2 which induced expression of osteocalcin as well as other phenotypic markers of osteoblasts, OCE1-binding activity was increased approximately 40-fold, indicating that OCE1 would be involved in the tissue-specific expression of the osteocalcin gene. These findings indicated for the first time that osteoblast-specific gene transcription is regulated via the interaction between certain E-box binding transcription factor(s) in osteoblasts and the OCE1 sequence in the promoter region of the osteocalcin gene. |
format | Text |
id | pubmed-2120135 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1994 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21201352008-05-01 Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors J Cell Biol Articles To elucidate regulatory mechanism(s) underlying differentiation of osteoblasts, we examined involvement of helix-loop-helix (HLH)-type transcription factors in osteoblast-specific expression of a phenotypic marker gene which encodes osteocalcin, a major noncollagenous bone matrix protein, exclusively expressed in osteoblasts. Overexpression of a dominant negative HLH protein, Id-1, decreased the activity of the 1.1-kb osteocalcin gene promoter cotransfected into rat osteoblastic osteosarcoma ROS17/2.8 cells. Analysis of deletion mutants revealed that a 264-bp fragment of osteocalcin promoter (-198 to +66) was sufficient for the Id-1-dependent suppression. Furthermore, the activity of the same promoter fragment (-198 to +66) was enhanced when antisense Id-1 expression vector was cotransfected. This osteocalcin gene promoter region contains two sites of an E-box motif, a consensus binding site for HLH proteins, which we refer to as OCE1 (CACATG, at - 102) and OCE2 (CAGCTG, at -149), respectively. Mutagenesis in OCE1 but not OCE2 led to greater than 50% reduction in transcriptional activity of the osteocalcin gene promoter. Electrophoresis mobility shift assay indicated that factors in nuclear extracts prepared from ROS17/2.8 cells bound to the 30-bp oligonucleotide probe containing the E-box motif of OCE1. This binding was competed out by OCE1 oligonucleotide but neither by OCmE1 oligonucleotide in which E-box motif was mutated nor by OCE2. The OCE1-binding activity in the nuclear extracts of ROS17/2.8 cells was reduced by 70% when bacterially expressed Id-1 protein was added to the reaction mixture, suggesting the involvement of HLH proteins in the DNA/protein complex formation. In contrast to the osteoblast-like cells, OCE1-binding activity in the nuclear extracts of C3H10T1/2 fibroblasts was very low. However, when these fibroblasts were treated with recombinant human bone morphogenetic protein-2 which induced expression of osteocalcin as well as other phenotypic markers of osteoblasts, OCE1-binding activity was increased approximately 40-fold, indicating that OCE1 would be involved in the tissue-specific expression of the osteocalcin gene. These findings indicated for the first time that osteoblast-specific gene transcription is regulated via the interaction between certain E-box binding transcription factor(s) in osteoblasts and the OCE1 sequence in the promoter region of the osteocalcin gene. The Rockefeller University Press 1994-08-01 /pmc/articles/PMC2120135/ /pubmed/8045940 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title | Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title_full | Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title_fullStr | Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title_full_unstemmed | Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title_short | Identification of a DNA sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (HLH)-type transcription factors |
title_sort | identification of a dna sequence involved in osteoblast-specific gene expression via interaction with helix-loop-helix (hlh)-type transcription factors |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120135/ https://www.ncbi.nlm.nih.gov/pubmed/8045940 |