Cargando…

Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A

Recent evidence suggests a role for heterotrimeric G proteins in vesicular transport. Cholera toxin, which activates Gs alpha by ADP- ribosylation, has been reported to stimulate both apical secretion (Pimplikar, S.W., and K. Simons. 1993. Nature (Lond.). 352:456-458) and apically directed transcyto...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120136/
https://www.ncbi.nlm.nih.gov/pubmed/8045932
_version_ 1782141424632856576
collection PubMed
description Recent evidence suggests a role for heterotrimeric G proteins in vesicular transport. Cholera toxin, which activates Gs alpha by ADP- ribosylation, has been reported to stimulate both apical secretion (Pimplikar, S.W., and K. Simons. 1993. Nature (Lond.). 352:456-458) and apically directed transcytosis (Bomsel, M., and K.E. Mostov. 1993. J. Biol. Chem. 268:25824-25835) in MDCK cells, via a cAMP-independent mechanism. Here, we demonstrate that apical secretion and apically directed transcytosis are significantly stimulated by agents that elevate cellular cAMP. Forskolin, which activates adenylyl cyclase directly, and 8BrcAMP augment both transport processes in MDCK cells. The increase is not limited to receptor-mediated transport (polymeric Ig receptor), since transcytosis of ricin, a galactose-binding lectin, is similarly stimulated. The effects of elevated cellular cAMP on apical secretion and transcytosis are apparently mediated via protein kinase A (PKA), as they are inhibited by H-89, a selective PKA inhibitor. Experiments employing a 17 degrees C temperature block indicate that cAMP/PKA acts at a late, possibly rate-limiting stage in the transcytotic pathway, after translocation of internalized markers into the apical cytoplasm. However, no significant stimulus of apical recycling was observed in the presence of FSK, suggesting that cAMP/PKA either affects transcytosis at a level proximal to apical early endosomes and/or specifically increases the efficiency by which transcytosing molecules are delivered to the apical plasma membrane. Finally, we overexpressed wild-type Gs alpha and a mutant, Q227L, which constitutively activates adenylyl cyclase, in MDCK cells. Although Q227L increased transcytosis more than wild-type Gs alpha, neither construct was as effective as FSK in stimulating transcytosis, arguing against a significant role of Gs alpha in transcytosis independent of cAMP and PKA.
format Text
id pubmed-2120136
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21201362008-05-01 Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A J Cell Biol Articles Recent evidence suggests a role for heterotrimeric G proteins in vesicular transport. Cholera toxin, which activates Gs alpha by ADP- ribosylation, has been reported to stimulate both apical secretion (Pimplikar, S.W., and K. Simons. 1993. Nature (Lond.). 352:456-458) and apically directed transcytosis (Bomsel, M., and K.E. Mostov. 1993. J. Biol. Chem. 268:25824-25835) in MDCK cells, via a cAMP-independent mechanism. Here, we demonstrate that apical secretion and apically directed transcytosis are significantly stimulated by agents that elevate cellular cAMP. Forskolin, which activates adenylyl cyclase directly, and 8BrcAMP augment both transport processes in MDCK cells. The increase is not limited to receptor-mediated transport (polymeric Ig receptor), since transcytosis of ricin, a galactose-binding lectin, is similarly stimulated. The effects of elevated cellular cAMP on apical secretion and transcytosis are apparently mediated via protein kinase A (PKA), as they are inhibited by H-89, a selective PKA inhibitor. Experiments employing a 17 degrees C temperature block indicate that cAMP/PKA acts at a late, possibly rate-limiting stage in the transcytotic pathway, after translocation of internalized markers into the apical cytoplasm. However, no significant stimulus of apical recycling was observed in the presence of FSK, suggesting that cAMP/PKA either affects transcytosis at a level proximal to apical early endosomes and/or specifically increases the efficiency by which transcytosing molecules are delivered to the apical plasma membrane. Finally, we overexpressed wild-type Gs alpha and a mutant, Q227L, which constitutively activates adenylyl cyclase, in MDCK cells. Although Q227L increased transcytosis more than wild-type Gs alpha, neither construct was as effective as FSK in stimulating transcytosis, arguing against a significant role of Gs alpha in transcytosis independent of cAMP and PKA. The Rockefeller University Press 1994-08-01 /pmc/articles/PMC2120136/ /pubmed/8045932 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title_full Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title_fullStr Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title_full_unstemmed Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title_short Gs alpha stimulates transcytosis and apical secretion in MDCK cells through cAMP and protein kinase A
title_sort gs alpha stimulates transcytosis and apical secretion in mdck cells through camp and protein kinase a
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120136/
https://www.ncbi.nlm.nih.gov/pubmed/8045932