Cargando…

Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells

Basic fibroblast growth factor (bFGF), a potent mitogenic/neurotrophic factor, controls the development and plasticity of many types of neural cells. In adrenal chromaffin cells, the appearance of bFGF protein coincided with the establishment of functional innervation, suggesting induction by trans-...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120178/
https://www.ncbi.nlm.nih.gov/pubmed/7929563
_version_ 1782141434575454208
collection PubMed
description Basic fibroblast growth factor (bFGF), a potent mitogenic/neurotrophic factor, controls the development and plasticity of many types of neural cells. In adrenal chromaffin cells, the appearance of bFGF protein coincided with the establishment of functional innervation, suggesting induction by trans-synaptic signals. In cultured bovine adrenal medullary cells Western blot analysis revealed 18-, 23-, and 24-kD bFGF isoforms in the cytosolic and nuclear fractions. Stimulation of acetylcholine nicotinic receptors or hormonal angiotensin II receptors or the direct stimulation of adenylate cyclase with forskolin or protein kinase C (PKC) with PMA increased the content of all bFGF isoforms. Increases in the levels of intracellular bFGF did not result in detectable presence of bFGF proteins in culture medium. Instead, bFGF proteins accumulated in the cytoplasm or the nucleus depending on whether PKC or cAMP pathways were activated. The long-term nuclear forskolin-induced accumulation of bFGF was prevented by cycloheximide or by antisense bFGF oligonucleotide and was also accompanied by an increase in bFGF mRNA. We used luciferase reporter plasmids containing the human bFGF promoter to show that the induction of bFGF resulted from transcriptional activation of the bFGF gene and was mediated by regulatory sequences located upstream from its transcription start site. Stimulation of bFGF gene expression by forskolin and PMA was synergistic and was mediated through different promoter regions. The results suggest that stimulation by cAMP and PKC is mediated through novel cis elements. The regulation of bFGF protein content also involves posttranscriptional mechanisms since changes in the levels of individual bFGF isoforms were different depending on whether cells were treated with carbachol or angiotensin II, forskolin, or PMA. The present study indicates that bFGF is an intracrine cytoplasmic-nuclear factor, whose expression is regulated by trans-synaptic and hormonal stimuli and which may act as a direct mediator of genomic responses to afferent stimulation.
format Text
id pubmed-2120178
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21201782008-05-01 Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells J Cell Biol Articles Basic fibroblast growth factor (bFGF), a potent mitogenic/neurotrophic factor, controls the development and plasticity of many types of neural cells. In adrenal chromaffin cells, the appearance of bFGF protein coincided with the establishment of functional innervation, suggesting induction by trans-synaptic signals. In cultured bovine adrenal medullary cells Western blot analysis revealed 18-, 23-, and 24-kD bFGF isoforms in the cytosolic and nuclear fractions. Stimulation of acetylcholine nicotinic receptors or hormonal angiotensin II receptors or the direct stimulation of adenylate cyclase with forskolin or protein kinase C (PKC) with PMA increased the content of all bFGF isoforms. Increases in the levels of intracellular bFGF did not result in detectable presence of bFGF proteins in culture medium. Instead, bFGF proteins accumulated in the cytoplasm or the nucleus depending on whether PKC or cAMP pathways were activated. The long-term nuclear forskolin-induced accumulation of bFGF was prevented by cycloheximide or by antisense bFGF oligonucleotide and was also accompanied by an increase in bFGF mRNA. We used luciferase reporter plasmids containing the human bFGF promoter to show that the induction of bFGF resulted from transcriptional activation of the bFGF gene and was mediated by regulatory sequences located upstream from its transcription start site. Stimulation of bFGF gene expression by forskolin and PMA was synergistic and was mediated through different promoter regions. The results suggest that stimulation by cAMP and PKC is mediated through novel cis elements. The regulation of bFGF protein content also involves posttranscriptional mechanisms since changes in the levels of individual bFGF isoforms were different depending on whether cells were treated with carbachol or angiotensin II, forskolin, or PMA. The present study indicates that bFGF is an intracrine cytoplasmic-nuclear factor, whose expression is regulated by trans-synaptic and hormonal stimuli and which may act as a direct mediator of genomic responses to afferent stimulation. The Rockefeller University Press 1994-10-01 /pmc/articles/PMC2120178/ /pubmed/7929563 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title_full Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title_fullStr Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title_full_unstemmed Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title_short Regulation of bFGF gene expression and subcellular distribution of bFGF protein in adrenal medullary cells
title_sort regulation of bfgf gene expression and subcellular distribution of bfgf protein in adrenal medullary cells
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120178/
https://www.ncbi.nlm.nih.gov/pubmed/7929563