Cargando…

Membrane insertion of gap junction connexins: polytopic channel forming membrane proteins

Connexins, the proteins that form gap junction channels, are polytopic plasma membrane (PM) proteins that traverse the plasma membrane bilayer four times. The insertion of five different connexins into the membrane of the ER was studied by synthesizing connexins in translation- competent cell lysate...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120216/
https://www.ncbi.nlm.nih.gov/pubmed/7929580
Descripción
Sumario:Connexins, the proteins that form gap junction channels, are polytopic plasma membrane (PM) proteins that traverse the plasma membrane bilayer four times. The insertion of five different connexins into the membrane of the ER was studied by synthesizing connexins in translation- competent cell lysates supplemented with pancreatic ER-derived microsomes, and by expressing connexins in vivo in several eucaryotic cell types. In addition, the subcellular distribution of the connexins was determined. In vitro-synthesis in the presence of microsomes resulted in the signal recognition particle-dependent membrane insertion of the connexins. The membrane insertion of all connexins was accompanied by an efficient proteolytic processing that was dependent on the microsome concentration. Endogenous unprocessed connexins were detectable in the microsomes used, indicating that the pancreatic microsomes serve as a competent recipient in vivo for unprocessed full length connexins. Although oriented with their amino terminus in the cytoplasm, the analysis of the cleavage reaction indicated that an unprecedented processing by signal peptidase resulted in the removal of an amino-terminal portion of the connexins. Variable amounts of similar connexin cleavage products were also identified in the ER membranes of connexin overexpressing cells. The amount generated correlated with the level of protein expression. These results demonstrate that the connexins contain a cryptic signal peptidase cleavage site that can be processed by this enzyme in vitro and in vivo in association with their membrane insertion. Consequently, a specific factor or condition must be required to prevent this aberrant processing of connexins under normal conditions in the cell.