Cargando…

Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts

To assess the role of clathrin in the bulk endocytic flow of rat foetal fibroblasts, the rate of internalization of fluid-phase and membrane- lipid tracers were compared, under control conditions and after inhibition of endocytic clathrin-coated pit formation. After intracellular potassium depletion...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120224/
https://www.ncbi.nlm.nih.gov/pubmed/7962055
_version_ 1782141445292949504
collection PubMed
description To assess the role of clathrin in the bulk endocytic flow of rat foetal fibroblasts, the rate of internalization of fluid-phase and membrane- lipid tracers were compared, under control conditions and after inhibition of endocytic clathrin-coated pit formation. After intracellular potassium depletion or upon cell transfer into 0.35 M NaCl, the rate of internalization of receptor-bound transferrin and the residual membrane area of plasmalemmal clathrin-coated pits and vesicles were similarly decreased by approximately 90%. In contrast, the initial rate (< 5 min) of intracellular accumulation of the fluid- phase tracer HRP was not affected. Both in control and treated cells, the rate of HRP accumulation declined after approximately 5 min, and was twofold lower in treated cells, due to enhanced regurgitation. After correction for regurgitation, the endocytic rate constant was similar to measurements at shorter intervals and identical in control and treated cells. Similarly, the rate of internalization and the steady-state level of intracellular accumulation of two fluorescent lipid derivatives, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4- yl)amino]hexanoylglucosylsp hingosine (C6-NBD-GlcCer) and 1-[4- (trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), were not affected by potassium depletion, indicating that the endocytic membrane traffic was equally preserved. Finally, the size distribution of primary endocytic particles that were accessible to HRP within 15 s before glutaraldehyde fixation was also indistinguishable in control and potassium-depleted cells. The simplest explanation is that clathrin polymerization is necessary to concentrate receptor-bound ligands in primary endocytic vesicles, but superfluous to the basic endocytic machinery in rat foetal fibroblasts.
format Text
id pubmed-2120224
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21202242008-05-01 Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts J Cell Biol Articles To assess the role of clathrin in the bulk endocytic flow of rat foetal fibroblasts, the rate of internalization of fluid-phase and membrane- lipid tracers were compared, under control conditions and after inhibition of endocytic clathrin-coated pit formation. After intracellular potassium depletion or upon cell transfer into 0.35 M NaCl, the rate of internalization of receptor-bound transferrin and the residual membrane area of plasmalemmal clathrin-coated pits and vesicles were similarly decreased by approximately 90%. In contrast, the initial rate (< 5 min) of intracellular accumulation of the fluid- phase tracer HRP was not affected. Both in control and treated cells, the rate of HRP accumulation declined after approximately 5 min, and was twofold lower in treated cells, due to enhanced regurgitation. After correction for regurgitation, the endocytic rate constant was similar to measurements at shorter intervals and identical in control and treated cells. Similarly, the rate of internalization and the steady-state level of intracellular accumulation of two fluorescent lipid derivatives, 6-[N-(7-nitro-2,1,3-benzoxadiazol-4- yl)amino]hexanoylglucosylsp hingosine (C6-NBD-GlcCer) and 1-[4- (trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH), were not affected by potassium depletion, indicating that the endocytic membrane traffic was equally preserved. Finally, the size distribution of primary endocytic particles that were accessible to HRP within 15 s before glutaraldehyde fixation was also indistinguishable in control and potassium-depleted cells. The simplest explanation is that clathrin polymerization is necessary to concentrate receptor-bound ligands in primary endocytic vesicles, but superfluous to the basic endocytic machinery in rat foetal fibroblasts. The Rockefeller University Press 1994-11-01 /pmc/articles/PMC2120224/ /pubmed/7962055 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title_full Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title_fullStr Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title_full_unstemmed Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title_short Clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
title_sort clathrin polymerization is not required for bulk-phase endocytosis in rat fetal fibroblasts
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120224/
https://www.ncbi.nlm.nih.gov/pubmed/7962055