Cargando…

Structural changes in muscle crossbridges accompanying force generation

We have investigated the structure of the crossbridges in muscles rapidly frozen while relaxed, in rigor, and at various times after activation from rigor by flash photolysis of caged ATP. We used Fourier analysis of images of cross sections to obtain an average view of the muscle structure, and cor...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120236/
https://www.ncbi.nlm.nih.gov/pubmed/7962058
_version_ 1782141448147173376
collection PubMed
description We have investigated the structure of the crossbridges in muscles rapidly frozen while relaxed, in rigor, and at various times after activation from rigor by flash photolysis of caged ATP. We used Fourier analysis of images of cross sections to obtain an average view of the muscle structure, and correspondence analysis to extract information about individual crossbridge shapes. The crossbridge structure changes dramatically between relaxed, rigor, and with time after ATP release. In relaxed muscle, most crossbridges are detached. In rigor, all are attached and have a characteristic asymmetric shape that shows strong left-handed curvature when viewed from the M-line towards the Z-line. Immediately after ATP release, before significant force has developed (20 ms) the homogeneous rigor population is replaced by a much more diverse collection of crossbridge shapes. Over the next few hundred milliseconds, the proportion of attached crossbridges changes little, but the distribution of the crossbridges among different structural classes continues to evolve. Some forms of attached crossbridge (presumably weakly attached) increase at early times when tension is low. The proportion of several other attached non-rigor crossbridge shapes increases in parallel with the development of active tension. The results lend strong support to models of muscle contraction that have attributed force generation to structural changes in attached crossbridges.
format Text
id pubmed-2120236
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21202362008-05-01 Structural changes in muscle crossbridges accompanying force generation J Cell Biol Articles We have investigated the structure of the crossbridges in muscles rapidly frozen while relaxed, in rigor, and at various times after activation from rigor by flash photolysis of caged ATP. We used Fourier analysis of images of cross sections to obtain an average view of the muscle structure, and correspondence analysis to extract information about individual crossbridge shapes. The crossbridge structure changes dramatically between relaxed, rigor, and with time after ATP release. In relaxed muscle, most crossbridges are detached. In rigor, all are attached and have a characteristic asymmetric shape that shows strong left-handed curvature when viewed from the M-line towards the Z-line. Immediately after ATP release, before significant force has developed (20 ms) the homogeneous rigor population is replaced by a much more diverse collection of crossbridge shapes. Over the next few hundred milliseconds, the proportion of attached crossbridges changes little, but the distribution of the crossbridges among different structural classes continues to evolve. Some forms of attached crossbridge (presumably weakly attached) increase at early times when tension is low. The proportion of several other attached non-rigor crossbridge shapes increases in parallel with the development of active tension. The results lend strong support to models of muscle contraction that have attributed force generation to structural changes in attached crossbridges. The Rockefeller University Press 1994-11-01 /pmc/articles/PMC2120236/ /pubmed/7962058 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Structural changes in muscle crossbridges accompanying force generation
title Structural changes in muscle crossbridges accompanying force generation
title_full Structural changes in muscle crossbridges accompanying force generation
title_fullStr Structural changes in muscle crossbridges accompanying force generation
title_full_unstemmed Structural changes in muscle crossbridges accompanying force generation
title_short Structural changes in muscle crossbridges accompanying force generation
title_sort structural changes in muscle crossbridges accompanying force generation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120236/
https://www.ncbi.nlm.nih.gov/pubmed/7962058