Cargando…

Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow

Memory T lymphocytes extravasate at sites of inflammation, but the mechanisms employed by these cells to initiate contact and tethering with endothelium are incompletely understood. An important part of leukocyte extravasation is the initiation of rolling adhesions on endothelial selectins; such eve...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120244/
https://www.ncbi.nlm.nih.gov/pubmed/7525609
_version_ 1782141450036707328
collection PubMed
description Memory T lymphocytes extravasate at sites of inflammation, but the mechanisms employed by these cells to initiate contact and tethering with endothelium are incompletely understood. An important part of leukocyte extravasation is the initiation of rolling adhesions on endothelial selectins; such events have been studied in monocytes and neutrophils but not lymphocytes. In this study, the potential of T lymphocytes to adhere and roll on endothelial selectins in vitro was investigated. We demonstrate that T cells can form tethers and rolling adhesions on P selectin and E selectin under physiologic flow conditions. Tethering and rolling on P selectin was independent of cell- surface cutaneous lymphocyte antigen (CLA) expression, which correlated strictly with the capacity of T cells to form rolling adhesions under flow on E selectin. T cell tethering to P selectin was abolished by selective removal of cell surface sialomucins by a P. haemolytica O- glycoprotease, while cutaneous lymphocyte antigen expression was unaffected. A sialomucin molecule identical or closely related to P selectin glycoprotein ligand-1 (PSGL-1), the major P selectin ligand on neutrophils and HL-60 cells, appears to be a major T cell ligand for P selectin. P selectin glycoprotein ligand-1 does not appear to support T cell rolling on E selectin. In turn, E selectin ligands do not appear to be associated with sialomucins. These data demonstrate the presence of structurally distinct ligands for P or E selectins on T cells, provide evidence that both ligands can be coexpressed on a single T cell, and mediate tethering and rolling on the respective selectins in a mutually exclusive fashion.
format Text
id pubmed-2120244
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21202442008-05-01 Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow J Cell Biol Articles Memory T lymphocytes extravasate at sites of inflammation, but the mechanisms employed by these cells to initiate contact and tethering with endothelium are incompletely understood. An important part of leukocyte extravasation is the initiation of rolling adhesions on endothelial selectins; such events have been studied in monocytes and neutrophils but not lymphocytes. In this study, the potential of T lymphocytes to adhere and roll on endothelial selectins in vitro was investigated. We demonstrate that T cells can form tethers and rolling adhesions on P selectin and E selectin under physiologic flow conditions. Tethering and rolling on P selectin was independent of cell- surface cutaneous lymphocyte antigen (CLA) expression, which correlated strictly with the capacity of T cells to form rolling adhesions under flow on E selectin. T cell tethering to P selectin was abolished by selective removal of cell surface sialomucins by a P. haemolytica O- glycoprotease, while cutaneous lymphocyte antigen expression was unaffected. A sialomucin molecule identical or closely related to P selectin glycoprotein ligand-1 (PSGL-1), the major P selectin ligand on neutrophils and HL-60 cells, appears to be a major T cell ligand for P selectin. P selectin glycoprotein ligand-1 does not appear to support T cell rolling on E selectin. In turn, E selectin ligands do not appear to be associated with sialomucins. These data demonstrate the presence of structurally distinct ligands for P or E selectins on T cells, provide evidence that both ligands can be coexpressed on a single T cell, and mediate tethering and rolling on the respective selectins in a mutually exclusive fashion. The Rockefeller University Press 1994-12-01 /pmc/articles/PMC2120244/ /pubmed/7525609 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title_full Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title_fullStr Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title_full_unstemmed Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title_short Distinct cell surface ligands mediate T lymphocyte attachment and rolling on P and E selectin under physiological flow
title_sort distinct cell surface ligands mediate t lymphocyte attachment and rolling on p and e selectin under physiological flow
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120244/
https://www.ncbi.nlm.nih.gov/pubmed/7525609