Cargando…

Concentration of intracellular hepatic apolipoprotein E in Golgi apparatus saccular distensions and endosomes

The intrahepatic distribution of apolipoprotein E has been assessed by immunogold labeling of cryosections as well as by Western blotting of organelles isolated from liver homogenates. Both techniques supported the prior analytical fractionation studies of Wong (1989) who concluded that intrahepatic...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120277/
https://www.ncbi.nlm.nih.gov/pubmed/7806565
Descripción
Sumario:The intrahepatic distribution of apolipoprotein E has been assessed by immunogold labeling of cryosections as well as by Western blotting of organelles isolated from liver homogenates. Both techniques supported the prior analytical fractionation studies of Wong (1989) who concluded that intrahepatic apoE was largely endosomal. All endosomal components decorated by gold particles indicative of apoE antigenicity in cryosections appeared filled with lipoprotein-like particles thereby accounting for this prominent morphological feature of isolated liver endosomes. The distribution of gold particles about the hepatic Golgi apparatus revealed a high content of apoE in closely apposed endosomes, ca. 400 nm in diameter, double labeled for apoE and internalized HRP. Remarkably, apoE (but not internalized HRP) was also observed within saccular distensions of all saccules of stacked Golgi cisternae but absent from the flattened saccular components as was also observed for apoB. This contrasted with albumin, the major secretory protein, which was uniformly distributed throughout the hepatic Golgi apparatus. These observations support a growing body of evidence for intra-Golgi sorting of secretory material in hepatic Golgi apparatus. The lack of any immunoreactive apoE or albumin in small 70-90 nm vesicles about the Golgi cisternae suggests limits to current models of vesicle-mediated intra-Golgi transport.