Cargando…

The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction

TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1994
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120301/
https://www.ncbi.nlm.nih.gov/pubmed/7528749
_version_ 1782141463346282496
collection PubMed
description TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes. However, despite high cell surface levels of alpha 6 beta 4, TA3/Ha cells do not adhere to the alpha 6 beta 4 ligands laminin and kalinin. Here we show that this is due to the mucin epiglycanin that is highly expressed on TA3/Ha cells. Some monoclonal antibodies generated against epiglycanin induced capping of most of the epiglycanin molecules. TA3/Ha cells treated with these mAb did adhere to laminin and kalinin, and an epithelial monolayer was formed on kalinin, with alpha 6 beta 4 localized in HD1-containing hemidesmosome- like structures and E-cadherin at the cell-cell contact sites. Similar results were obtained after treatment of TA3/Ha cells with O- sialoglycoprotein endopeptidase which removes all epiglycanin. In addition, the enzyme induced E-cadherin-mediated cell-cell aggregation. Both treatments also enhanced the adhesion to hepatocytes, but given the potent antiadhesive effect of epiglycanin it is remarkable that nontreated TA3/Ha cells adhere to hepatocytes at all. We found that during this interaction, epiglycanin was redistributed. We conclude that epiglycanin can completely prevent both intercellular and matrix adhesion, but that this effect can be overcome in certain intercellular interactions because of the induced redistribution of the mucin.
format Text
id pubmed-2120301
institution National Center for Biotechnology Information
language English
publishDate 1994
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21203012008-05-01 The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction J Cell Biol Articles TA3/Ha murine mammary carcinoma cells grow in suspension, do not adhere to extracellular matrix molecules, but do adhere to hepatocytes and form liver metastases upon intraportal injection. Recently we showed that the integrin alpha 6 beta 4 on the TA3/Ha cells is involved in adhesion to hepatocytes. However, despite high cell surface levels of alpha 6 beta 4, TA3/Ha cells do not adhere to the alpha 6 beta 4 ligands laminin and kalinin. Here we show that this is due to the mucin epiglycanin that is highly expressed on TA3/Ha cells. Some monoclonal antibodies generated against epiglycanin induced capping of most of the epiglycanin molecules. TA3/Ha cells treated with these mAb did adhere to laminin and kalinin, and an epithelial monolayer was formed on kalinin, with alpha 6 beta 4 localized in HD1-containing hemidesmosome- like structures and E-cadherin at the cell-cell contact sites. Similar results were obtained after treatment of TA3/Ha cells with O- sialoglycoprotein endopeptidase which removes all epiglycanin. In addition, the enzyme induced E-cadherin-mediated cell-cell aggregation. Both treatments also enhanced the adhesion to hepatocytes, but given the potent antiadhesive effect of epiglycanin it is remarkable that nontreated TA3/Ha cells adhere to hepatocytes at all. We found that during this interaction, epiglycanin was redistributed. We conclude that epiglycanin can completely prevent both intercellular and matrix adhesion, but that this effect can be overcome in certain intercellular interactions because of the induced redistribution of the mucin. The Rockefeller University Press 1994-12-02 /pmc/articles/PMC2120301/ /pubmed/7528749 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title_full The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title_fullStr The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title_full_unstemmed The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title_short The mucin epiglycanin on TA3/Ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and E-cadherin-mediated cell- cell interaction
title_sort mucin epiglycanin on ta3/ha carcinoma cells prevents alpha 6 beta 4- mediated adhesion to laminin and kalinin and e-cadherin-mediated cell- cell interaction
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120301/
https://www.ncbi.nlm.nih.gov/pubmed/7528749