Cargando…
Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors
Salmonella typhimurium is an intracellular bacterial pathogen that remains enclosed in vacuoles (SCV) upon entry into the host cell. In this study we have examined the intracellular trafficking route of S. typhimurium within epithelial cells. Indirect immunofluorescence analysis showed that bacteria...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120372/ https://www.ncbi.nlm.nih.gov/pubmed/7698996 |
_version_ | 1782141479936851968 |
---|---|
collection | PubMed |
description | Salmonella typhimurium is an intracellular bacterial pathogen that remains enclosed in vacuoles (SCV) upon entry into the host cell. In this study we have examined the intracellular trafficking route of S. typhimurium within epithelial cells. Indirect immunofluorescence analysis showed that bacteria initiated fusion with lysosomal membrane glycoprotein (lgp)-containing compartments approximately 15 min after bacterial internalization. This process was completed approximately 75 min later and did not require microtubules. Cation-independent (CI)- or cation-dependent (CD)-mannose 6-phosphate receptors (M6PRs) were not observed at detectable levels in SCV. Lysosomal enzymes showed a different distribution in SCV: lysosomal-acid phosphatase (LAP) was incorporated into these vacuoles with the same kinetics as lgps, while cathepsin D was present in a low proportion (approximately 30%) of SCV. Uptake experiments with fluid endocytic tracers such as fluorescein- dextran sulphate (F-DX) or horseradish-peroxidase (HRP) showed that after 2 h of uptake, F-DX was present in approximately 75% of lgp- containing vesicles in uninfected cells, while only approximately 15% of SCV contained small amounts of the tracer during the same uptake period. SCV also showed only partial fusion with HRP-preloaded secondary lysosomes, with approximately 30% of SCV having detectable amounts of HRP at 6 h after infection. These results indicate that SCV show limited accessibility to fluid endocytic tracers and mature lysosomes, and are therefore functionally separated from the endocytic route. Moreover, the unusual intracellular trafficking route of S. typhimurium inside epithelial cells has allowed us to establish the existence of two different lgp-containing vesicles in Salmonella- infected cells: one population is separated from the endocytic route, fusogenic with incoming SCV and may arise from a secretory pathway, while the second involves the classical secondary or mature lysosomes. |
format | Text |
id | pubmed-2120372 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21203722008-05-01 Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors J Cell Biol Articles Salmonella typhimurium is an intracellular bacterial pathogen that remains enclosed in vacuoles (SCV) upon entry into the host cell. In this study we have examined the intracellular trafficking route of S. typhimurium within epithelial cells. Indirect immunofluorescence analysis showed that bacteria initiated fusion with lysosomal membrane glycoprotein (lgp)-containing compartments approximately 15 min after bacterial internalization. This process was completed approximately 75 min later and did not require microtubules. Cation-independent (CI)- or cation-dependent (CD)-mannose 6-phosphate receptors (M6PRs) were not observed at detectable levels in SCV. Lysosomal enzymes showed a different distribution in SCV: lysosomal-acid phosphatase (LAP) was incorporated into these vacuoles with the same kinetics as lgps, while cathepsin D was present in a low proportion (approximately 30%) of SCV. Uptake experiments with fluid endocytic tracers such as fluorescein- dextran sulphate (F-DX) or horseradish-peroxidase (HRP) showed that after 2 h of uptake, F-DX was present in approximately 75% of lgp- containing vesicles in uninfected cells, while only approximately 15% of SCV contained small amounts of the tracer during the same uptake period. SCV also showed only partial fusion with HRP-preloaded secondary lysosomes, with approximately 30% of SCV having detectable amounts of HRP at 6 h after infection. These results indicate that SCV show limited accessibility to fluid endocytic tracers and mature lysosomes, and are therefore functionally separated from the endocytic route. Moreover, the unusual intracellular trafficking route of S. typhimurium inside epithelial cells has allowed us to establish the existence of two different lgp-containing vesicles in Salmonella- infected cells: one population is separated from the endocytic route, fusogenic with incoming SCV and may arise from a secretory pathway, while the second involves the classical secondary or mature lysosomes. The Rockefeller University Press 1995-04-01 /pmc/articles/PMC2120372/ /pubmed/7698996 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title | Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title_full | Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title_fullStr | Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title_full_unstemmed | Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title_short | Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
title_sort | targeting of salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120372/ https://www.ncbi.nlm.nih.gov/pubmed/7698996 |