Cargando…

Effects of CapG overexpression on agonist-induced motility and second messenger generation

Actin modulating proteins that bind polyphosphoinositides, such as phosphatidylinositol 4, 5-bisphosphate (PIP2), can potentially participate in receptor signaling by restructuring the membrane cytoskeleton and modulating second messenger generation through the phosphoinositide cycle. We examined th...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120377/
https://www.ncbi.nlm.nih.gov/pubmed/7698981
_version_ 1782141481100771328
collection PubMed
description Actin modulating proteins that bind polyphosphoinositides, such as phosphatidylinositol 4, 5-bisphosphate (PIP2), can potentially participate in receptor signaling by restructuring the membrane cytoskeleton and modulating second messenger generation through the phosphoinositide cycle. We examined these possibilities by overexpressing CapG, an actin filament end capping, Ca(2+)- and polyphosphoinositide-binding protein of the gelsolin family. High level transient overexpression decreased actin filament staining in the center of the cells but not in the cell periphery. Moderate overexpression in clonally selected cell lines did not have a detectible effect on actin filament content or organization. Nevertheless, it promoted a dose-dependent increase in rates of wound healing and chemotaxis. The motile phenotype was similar to that observed with gelsolin overexpression, which in addition to capping, also severs and nucleates actin filaments. CapG overexpressing clones are more responsive to platelet-derived growth factor than control- transfected clones. They form more circular dorsal membrane ruffles, have higher phosphoinositide turnover, inositol 1,4,5-trisphosphate generation and Ca2+ signaling. These responses are consistent with enhanced PLC gamma activity. Direct measurements of PIP2 mass showed that the CapG effect on PLC gamma was not due primarily to an increase in the PIP2 substrate concentration. The observed changes in cell motility and membrane signaling are consistent with the hypothesis that PIP(2)-binding actin regulatory proteins modulate phosphoinositide turnover and second messenger generation in vivo. We infer that CapG and related proteins are poised to coordinate membrane signaling with actin filament dynamics following cell stimulation.
format Text
id pubmed-2120377
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21203772008-05-01 Effects of CapG overexpression on agonist-induced motility and second messenger generation J Cell Biol Articles Actin modulating proteins that bind polyphosphoinositides, such as phosphatidylinositol 4, 5-bisphosphate (PIP2), can potentially participate in receptor signaling by restructuring the membrane cytoskeleton and modulating second messenger generation through the phosphoinositide cycle. We examined these possibilities by overexpressing CapG, an actin filament end capping, Ca(2+)- and polyphosphoinositide-binding protein of the gelsolin family. High level transient overexpression decreased actin filament staining in the center of the cells but not in the cell periphery. Moderate overexpression in clonally selected cell lines did not have a detectible effect on actin filament content or organization. Nevertheless, it promoted a dose-dependent increase in rates of wound healing and chemotaxis. The motile phenotype was similar to that observed with gelsolin overexpression, which in addition to capping, also severs and nucleates actin filaments. CapG overexpressing clones are more responsive to platelet-derived growth factor than control- transfected clones. They form more circular dorsal membrane ruffles, have higher phosphoinositide turnover, inositol 1,4,5-trisphosphate generation and Ca2+ signaling. These responses are consistent with enhanced PLC gamma activity. Direct measurements of PIP2 mass showed that the CapG effect on PLC gamma was not due primarily to an increase in the PIP2 substrate concentration. The observed changes in cell motility and membrane signaling are consistent with the hypothesis that PIP(2)-binding actin regulatory proteins modulate phosphoinositide turnover and second messenger generation in vivo. We infer that CapG and related proteins are poised to coordinate membrane signaling with actin filament dynamics following cell stimulation. The Rockefeller University Press 1995-04-01 /pmc/articles/PMC2120377/ /pubmed/7698981 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Effects of CapG overexpression on agonist-induced motility and second messenger generation
title Effects of CapG overexpression on agonist-induced motility and second messenger generation
title_full Effects of CapG overexpression on agonist-induced motility and second messenger generation
title_fullStr Effects of CapG overexpression on agonist-induced motility and second messenger generation
title_full_unstemmed Effects of CapG overexpression on agonist-induced motility and second messenger generation
title_short Effects of CapG overexpression on agonist-induced motility and second messenger generation
title_sort effects of capg overexpression on agonist-induced motility and second messenger generation
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120377/
https://www.ncbi.nlm.nih.gov/pubmed/7698981