Cargando…

Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy

Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK- 52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120382/
https://www.ncbi.nlm.nih.gov/pubmed/7698989
_version_ 1782141482266787840
collection PubMed
description Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK- 52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6- expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein.
format Text
id pubmed-2120382
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21203822008-05-01 Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy J Cell Biol Articles Although renal hypertrophy is often associated with the progressive loss of renal function, the mechanism of hypertrophy is poorly understood. In both primary cultures of rabbit proximal tubules and NRK- 52E cells (a renal epithelial cell line), transforming growth factor beta 1 (TGF beta) converted epidermal growth factor (EGF)-induced hyperplasia into hypertrophy. TGF beta did not affect EGF-induced increases in c-fos mRNA abundance or cyclin E protein abundance, but inhibited EGF-induced entry into S, G2, and M phases. EGF alone increased the amount of hyperphosphorylated (inactive) pRB; TGF beta blocked EGF-induced pRB phosphorylation, maintaining pRB in the active form. To determine the importance of active pRB in TGF beta-induced hypertrophy, NRK-52E cells were infected with SV40 large T antigen (which inactivates pRB and related proteins and p53), HPV16 E6 (which degrades p53), HPV16 E7 (which binds and inactivates pRB and related proteins), or both HPV16 E6 and E7. In SV40 large T antigen expressing clones, the magnitude of EGF + TGF beta-induced hypertrophy was inhibited and was inversely related to the magnitude of SV40 large T antigen expression. In the HPV16-infected cells, EGF + TGF beta-induced hypertrophy was inhibited in E7- and E6E7-expressing, but not E6- expressing cells. These results suggest a requirement for active pRB in the development of EGF + TGF beta-induced renal epithelial cell hypertrophy. We suggest a model of renal cell hypertrophy mediated by EGF-induced entry into the cell cycle with TGF beta-induced blockade at G1/S, the latter due to maintained activity of pRB or a related protein. The Rockefeller University Press 1995-04-01 /pmc/articles/PMC2120382/ /pubmed/7698989 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title_full Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title_fullStr Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title_full_unstemmed Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title_short Involvement of pRB family in TGF beta-dependent epithelial cell hypertrophy
title_sort involvement of prb family in tgf beta-dependent epithelial cell hypertrophy
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120382/
https://www.ncbi.nlm.nih.gov/pubmed/7698989