Cargando…
Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro
Interphase Xenopus egg extracts form extensive tubular membrane networks in vitro. These networks are identified here as endoplasmic reticulum by the presence of ER resident proteins, as shown by immunofluorescence, and by the presence of single ribosomes and polysomes, as shown by electron microsco...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120396/ https://www.ncbi.nlm.nih.gov/pubmed/7876311 |
_version_ | 1782141485587628032 |
---|---|
collection | PubMed |
description | Interphase Xenopus egg extracts form extensive tubular membrane networks in vitro. These networks are identified here as endoplasmic reticulum by the presence of ER resident proteins, as shown by immunofluorescence, and by the presence of single ribosomes and polysomes, as shown by electron microscopy. The effect of phosphorylation on ER movement in interphase was tested using the phosphatase inhibitor, okadaic acid. Okadaic acid treatment resulted in an increase of up to 27-fold in the number of ER tubules moving and in the extent of ER networks formed compared to control extracts. This activation was blocked by the broad-specificity kinase inhibitor 6- dimethylaminopurine. Okadaic acid had no effect, however, on the direction of ER tubule movement, which occurred towards the minus end of microtubules, and was sensitive to low concentrations of vanadate. Inhibition of phosphatases also had no effect on the speed or duration of ER tubule extensions, and did not stimulate the activity of soluble cytoplasmic dynein. The sensitivity of ER movement to okadaic acid closely matched that of protein phosphatase 1. Although the amount of ER motility was greatly increased by inhibiting protein phosphatase 1 (PP1), the amount of cytoplasmic dynein associated with the membrane was not altered. The data support a model in which phosphorylation regulates ER movement by controlling the activity of cytoplasmic dynein bound to the ER membrane. |
format | Text |
id | pubmed-2120396 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21203962008-05-01 Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro J Cell Biol Articles Interphase Xenopus egg extracts form extensive tubular membrane networks in vitro. These networks are identified here as endoplasmic reticulum by the presence of ER resident proteins, as shown by immunofluorescence, and by the presence of single ribosomes and polysomes, as shown by electron microscopy. The effect of phosphorylation on ER movement in interphase was tested using the phosphatase inhibitor, okadaic acid. Okadaic acid treatment resulted in an increase of up to 27-fold in the number of ER tubules moving and in the extent of ER networks formed compared to control extracts. This activation was blocked by the broad-specificity kinase inhibitor 6- dimethylaminopurine. Okadaic acid had no effect, however, on the direction of ER tubule movement, which occurred towards the minus end of microtubules, and was sensitive to low concentrations of vanadate. Inhibition of phosphatases also had no effect on the speed or duration of ER tubule extensions, and did not stimulate the activity of soluble cytoplasmic dynein. The sensitivity of ER movement to okadaic acid closely matched that of protein phosphatase 1. Although the amount of ER motility was greatly increased by inhibiting protein phosphatase 1 (PP1), the amount of cytoplasmic dynein associated with the membrane was not altered. The data support a model in which phosphorylation regulates ER movement by controlling the activity of cytoplasmic dynein bound to the ER membrane. The Rockefeller University Press 1995-03-01 /pmc/articles/PMC2120396/ /pubmed/7876311 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title | Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title_full | Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title_fullStr | Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title_full_unstemmed | Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title_short | Protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
title_sort | protein phosphatase 1 regulates the cytoplasmic dynein-driven formation of endoplasmic reticulum networks in vitro |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120396/ https://www.ncbi.nlm.nih.gov/pubmed/7876311 |