Cargando…

Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis

Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120436/
https://www.ncbi.nlm.nih.gov/pubmed/7730405
_version_ 1782141495044734976
collection PubMed
description Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo requires stabilizing factors other than, or in addition to, TM.
format Text
id pubmed-2120436
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21204362008-05-01 Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis J Cell Biol Articles Human fibroblasts generate at least eight tropomyosin (TM) isoforms (hTM1, hTM2, hTM3, hTM4, hTM5, hTM5a, hTM5b, and hTMsm alpha) from four distinct genes, and we have previously demonstrated that bacterially produced chimera hTM5/3 exhibits an unusually high affinity for actin filaments and a loss of the salt dependence typical for TM-actin binding (Novy, R.E., J. R. Sellers, L.-F. Liu, and J.J.-C. Lin, 1993. Cell Motil. & Cytoskeleton. 26: 248-261). To examine the functional consequences of expressing this mutant TM isoform in vivo, we have transfected CHO cells with the full-length cDNA for hTM5/3 and compared them to cells transfected with hTM3 and hTM5. Immunofluorescence microscopy reveals that stably transfected CHO cells incorporate force- expressed hTM3 and hTM5 into stress fibers with no significant effect on general cell morphology, microfilament organization or cytokinesis. In stable lines expressing hTM5/3, however, cell division is slow and sometimes incomplete. The doubling time and the incidence of multinucleate cells in the stable hTM5/3 lines roughly parallel expression levels. A closely related chimeric isoform hTM5/2, which differs only in the internal, alternatively spliced exon also produces defects in cytokinesis, suggesting that normal TM function may involve coordination between the amino and carboxy terminal regions. This coordination may be prevented in the chimeric mutants. As bacterially produced hTM5/3 and hTM5/2 can displace hTM3 and hTM5 from actin filaments in vitro, it is likely that CHO-expressed hTM5/3 and hTM5/2 can displace endogenous TMs to act dominantly in vivo. These results support a role for nonmuscle TM isoforms in the fine tuning of microfilament organization during cytokinesis. Additionally, we find that overexpression of TM does not stabilize endogenous microfilaments, rather, the hTM-expressing cells are actually more sensitive to cytochalasin B. This suggests that regulation of microfilament integrity in vivo requires stabilizing factors other than, or in addition to, TM. The Rockefeller University Press 1995-05-01 /pmc/articles/PMC2120436/ /pubmed/7730405 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title_full Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title_fullStr Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title_full_unstemmed Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title_short Forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
title_sort forced expression of chimeric human fibroblast tropomyosin mutants affects cytokinesis
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120436/
https://www.ncbi.nlm.nih.gov/pubmed/7730405