Cargando…
Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells
Various factors are known to regulate cell growth and differentiation in epithelial-mesenchymal interactions. Keratinocyte growth factor (KGF), an epithelial-specific cytokine produced by dermal fibroblasts and other mesenchymal cells, appears to affect growth, migration, and differentiation in epit...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120455/ https://www.ncbi.nlm.nih.gov/pubmed/7730415 |
_version_ | 1782141499485454336 |
---|---|
collection | PubMed |
description | Various factors are known to regulate cell growth and differentiation in epithelial-mesenchymal interactions. Keratinocyte growth factor (KGF), an epithelial-specific cytokine produced by dermal fibroblasts and other mesenchymal cells, appears to affect growth, migration, and differentiation in epithelial-mesenchymal interactions. We have previously shown that human embryonic skin fibroblasts induce anchorage- independent growth of HPV16 DNA-immortalized human uterine exocervical epithelial cells (HCE16/3 cell line) in cocultures of HCE16/3 cells and fibroblasts. Here we report that KGF may be a major factor influencing growth and behavior of HCE16/3 cells in the coculture system. KGF stimulated both DNA synthesis and proliferation of normal human cervical epithelial (HCE) cells and HCE16/3 cells and the increase was stronger in HCE16/3 cells than in HCE cells. SiHa cells, a cervical carcinoma cell line with integrated HPV16 DNA, did not respond to the KGF mitogen signal. KGF receptor (KGFR) studies suggested that the different responses to the KGF mitogen signal may be correlated with KGFR. In addition, KGF alone was able to induce anchorage-independent growth of HCE16/3 cells, suggesting a potential role for KGF in the transformation process of epithelial cells. However, the transcription of HPV16 early genes was suppressed by KGF in the immortalized HCE16/3 cells, and this appeared to be due to transcriptional repression rather than a posttranscriptional process according to nuclear run-on analysis. In contrast, viral gene expression was not affected by KGF in SiHa cells. Our results suggest that KGF is a bifunctional growth factor in the HPV-immortalized cells, a positive regulator of cell growth and negative regulator of HPV16 early gene expression. |
format | Text |
id | pubmed-2120455 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21204552008-05-01 Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells J Cell Biol Articles Various factors are known to regulate cell growth and differentiation in epithelial-mesenchymal interactions. Keratinocyte growth factor (KGF), an epithelial-specific cytokine produced by dermal fibroblasts and other mesenchymal cells, appears to affect growth, migration, and differentiation in epithelial-mesenchymal interactions. We have previously shown that human embryonic skin fibroblasts induce anchorage- independent growth of HPV16 DNA-immortalized human uterine exocervical epithelial cells (HCE16/3 cell line) in cocultures of HCE16/3 cells and fibroblasts. Here we report that KGF may be a major factor influencing growth and behavior of HCE16/3 cells in the coculture system. KGF stimulated both DNA synthesis and proliferation of normal human cervical epithelial (HCE) cells and HCE16/3 cells and the increase was stronger in HCE16/3 cells than in HCE cells. SiHa cells, a cervical carcinoma cell line with integrated HPV16 DNA, did not respond to the KGF mitogen signal. KGF receptor (KGFR) studies suggested that the different responses to the KGF mitogen signal may be correlated with KGFR. In addition, KGF alone was able to induce anchorage-independent growth of HCE16/3 cells, suggesting a potential role for KGF in the transformation process of epithelial cells. However, the transcription of HPV16 early genes was suppressed by KGF in the immortalized HCE16/3 cells, and this appeared to be due to transcriptional repression rather than a posttranscriptional process according to nuclear run-on analysis. In contrast, viral gene expression was not affected by KGF in SiHa cells. Our results suggest that KGF is a bifunctional growth factor in the HPV-immortalized cells, a positive regulator of cell growth and negative regulator of HPV16 early gene expression. The Rockefeller University Press 1995-05-01 /pmc/articles/PMC2120455/ /pubmed/7730415 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title | Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title_full | Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title_fullStr | Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title_full_unstemmed | Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title_short | Keratinocyte growth factor is a bifunctional regulator of HPV16 DNA- immortalized cervical epithelial cells |
title_sort | keratinocyte growth factor is a bifunctional regulator of hpv16 dna- immortalized cervical epithelial cells |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120455/ https://www.ncbi.nlm.nih.gov/pubmed/7730415 |