Cargando…

Molecular size-fractionation during endocytosis in macrophages

The sorting of macromolecules within and between membranous organelles is often directed by information contained in protein primary or secondary structure. We show here that absent such structural information, macromolecules internalized by endocytosis in macrophages can be sorted by size. After en...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120495/
https://www.ncbi.nlm.nih.gov/pubmed/7538141
_version_ 1782141508678320128
collection PubMed
description The sorting of macromolecules within and between membranous organelles is often directed by information contained in protein primary or secondary structure. We show here that absent such structural information, macromolecules internalized by endocytosis in macrophages can be sorted by size. After endocytosis, small solute probes of fluid- phase pinocytosis were recycled to the extracellular medium more efficiently than large solutes. Using macropinosomes pulse labeled with fluorescent dextrans, we examined the ability of organelles to exchange solute contents. Dextran exchange was optimal between organelles of similar age, and small dextrans exchanged more efficiently than large dextrans. Efferent solute movement, from lysosomes or phagolysosomes toward the plasma membrane, occurred through the same endocytic vesicles as afferent movement, toward lysosomes and this movement was solute size dependent. Remarkably, uniform mixtures of different-sized dextrans delivered into lysosomes separated into distinct organelles containing only one dextran or the other. Thus, the dynamics of endosomes and lysosomes were sufficient to segregate macromolecules by size. This intracellular size fractionation could explain how, during antigen presentation, peptides generated by lysosomal proteases recycle selectively from lysosomes to endosomes for association with class II MHC molecules.
format Text
id pubmed-2120495
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21204952008-05-01 Molecular size-fractionation during endocytosis in macrophages J Cell Biol Articles The sorting of macromolecules within and between membranous organelles is often directed by information contained in protein primary or secondary structure. We show here that absent such structural information, macromolecules internalized by endocytosis in macrophages can be sorted by size. After endocytosis, small solute probes of fluid- phase pinocytosis were recycled to the extracellular medium more efficiently than large solutes. Using macropinosomes pulse labeled with fluorescent dextrans, we examined the ability of organelles to exchange solute contents. Dextran exchange was optimal between organelles of similar age, and small dextrans exchanged more efficiently than large dextrans. Efferent solute movement, from lysosomes or phagolysosomes toward the plasma membrane, occurred through the same endocytic vesicles as afferent movement, toward lysosomes and this movement was solute size dependent. Remarkably, uniform mixtures of different-sized dextrans delivered into lysosomes separated into distinct organelles containing only one dextran or the other. Thus, the dynamics of endosomes and lysosomes were sufficient to segregate macromolecules by size. This intracellular size fractionation could explain how, during antigen presentation, peptides generated by lysosomal proteases recycle selectively from lysosomes to endosomes for association with class II MHC molecules. The Rockefeller University Press 1995-05-02 /pmc/articles/PMC2120495/ /pubmed/7538141 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular size-fractionation during endocytosis in macrophages
title Molecular size-fractionation during endocytosis in macrophages
title_full Molecular size-fractionation during endocytosis in macrophages
title_fullStr Molecular size-fractionation during endocytosis in macrophages
title_full_unstemmed Molecular size-fractionation during endocytosis in macrophages
title_short Molecular size-fractionation during endocytosis in macrophages
title_sort molecular size-fractionation during endocytosis in macrophages
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120495/
https://www.ncbi.nlm.nih.gov/pubmed/7538141