Cargando…
Epidermal growth factor promotes a neural phenotype in thymic epithelial cells and enhances neuropoietic cytokine expression
Neural crest-derived cells populate the thymus, and their coexistence with epithelial cells is required for proper organ development and T cell education function. We show here that epidermal growth factor (EGF), a major epithelial cell growth-enhancing agent, has a morphogenetic action to promote t...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120518/ https://www.ncbi.nlm.nih.gov/pubmed/7540616 |
Sumario: | Neural crest-derived cells populate the thymus, and their coexistence with epithelial cells is required for proper organ development and T cell education function. We show here that epidermal growth factor (EGF), a major epithelial cell growth-enhancing agent, has a morphogenetic action to promote the expression of a neuronal phenotype (e.g., neurofilament expression) in cultured thymic epithelial cells that are characterized by a cytokeratin-positive epithelial cell background. The proliferation of such neurodifferentiated cells is also enhanced by EGF. Furthermore, the growth factor enhances cells that express the genes encoding the preprotachykinin A-generated neuropeptides and bipotential neuropoietic and lymphopoietic cytokines ciliary neurotrophic factor and interleukin-6. These cytokines also enhance the neuronal phenotype of thymic epithelial cells. Therefore, EGF appears to be a composite autocrine/paracrine neuromodulator in thymic stroma. This suggests that EGF may regulate thymus-dependent immune functions by promoting neuronal gene expression in neural crest- derived cells. |
---|