Cargando…
Three-dimensional structural characterization of centrosomes from early Drosophila embryos
An understanding of the mechanism and structure of microtubule (MT)- nucleating sites within the pericentriolar material (PCM) of the centrosome has been elusive. This is partly due to the difficulty in obtaining large quantities of centrosomes for analysis, as well as to the problem of attaining in...
Formato: | Texto |
---|---|
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
1995
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120545/ https://www.ncbi.nlm.nih.gov/pubmed/7657699 |
_version_ | 1782141520375185408 |
---|---|
collection | PubMed |
description | An understanding of the mechanism and structure of microtubule (MT)- nucleating sites within the pericentriolar material (PCM) of the centrosome has been elusive. This is partly due to the difficulty in obtaining large quantities of centrosomes for analysis, as well as to the problem of attaining interpretable structural data with conventional EM techniques. We describe a protocol for isolating a large quantity of functional centrosomes from early Drosophila embryos. Using automated electron tomography, we have begun a three-dimensional structural characterization of these intact centrosomes with and without regrown MTs. Reconstructions of the centrosomes to approximately 6-8 nm resolution revealed no large structures at the minus ends of MTs, suggesting that if MT-nucleating material physically contacts the MTs, it must conform closely to the shape of the minus end. While many MTs originate near the centrioles, MT minus ends were found throughout the PCM, and even close to its outer boundary. The MTs criss-crossed the PCM, suggesting that nucleating sites are oriented in many different directions. Reconstructions of centrosomes without MTs suggest that there is a reorganization of the PCM upon MT regrowth; moreover, ring-like structures that have a similar diameter as MTs are apparent in the PCM of centrosomes without MTs, and may be MT- nucleating sites. |
format | Text |
id | pubmed-2120545 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 1995 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-21205452008-05-01 Three-dimensional structural characterization of centrosomes from early Drosophila embryos J Cell Biol Articles An understanding of the mechanism and structure of microtubule (MT)- nucleating sites within the pericentriolar material (PCM) of the centrosome has been elusive. This is partly due to the difficulty in obtaining large quantities of centrosomes for analysis, as well as to the problem of attaining interpretable structural data with conventional EM techniques. We describe a protocol for isolating a large quantity of functional centrosomes from early Drosophila embryos. Using automated electron tomography, we have begun a three-dimensional structural characterization of these intact centrosomes with and without regrown MTs. Reconstructions of the centrosomes to approximately 6-8 nm resolution revealed no large structures at the minus ends of MTs, suggesting that if MT-nucleating material physically contacts the MTs, it must conform closely to the shape of the minus end. While many MTs originate near the centrioles, MT minus ends were found throughout the PCM, and even close to its outer boundary. The MTs criss-crossed the PCM, suggesting that nucleating sites are oriented in many different directions. Reconstructions of centrosomes without MTs suggest that there is a reorganization of the PCM upon MT regrowth; moreover, ring-like structures that have a similar diameter as MTs are apparent in the PCM of centrosomes without MTs, and may be MT- nucleating sites. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2120545/ /pubmed/7657699 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/). |
spellingShingle | Articles Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title | Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title_full | Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title_fullStr | Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title_full_unstemmed | Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title_short | Three-dimensional structural characterization of centrosomes from early Drosophila embryos |
title_sort | three-dimensional structural characterization of centrosomes from early drosophila embryos |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120545/ https://www.ncbi.nlm.nih.gov/pubmed/7657699 |