Cargando…

Biogenesis of synaptic vesicles in vitro

Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle me...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120557/
https://www.ncbi.nlm.nih.gov/pubmed/7544795
_version_ 1782141523192709120
collection PubMed
description Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle membrane proteins from other cellular proteins, and the packaging of those unique proteins into vesicles of the correct size. By labeling an epitope-tagged variant of a synaptic vesicle protein, VAMP (synaptobrevin), at the cell surface of the neuroendocrine cell line PC12, synaptic vesicle biogenesis could be followed with considerable precision, quantitatively and kinetically. Epitope-tagged VAMP was recovered in synaptic vesicles within a few minutes of leaving the cell surface. More efficient targeting was obtained by using the VAMP mutant, del 61-70. Synaptic vesicles did not form at 15 degrees C although endocytosis still occurred. Synaptic vesicles could be generated in vitro from a homogenate of cells labeled at 15 degrees C. The newly formed vesicles are identical to those formed in vivo in their sedimentation characteristics, the presence of the synaptic vesicle protein synaptophysin, and the absence of detectable transferrin receptor. Brain, but not fibroblast cytosol, allows vesicles of the correct size to form. Vesicle formation is time and temperature-dependent, requires ATP, is calcium independent, and is inhibited by GTP-gamma S. Thus, two key steps in synaptic vesicle biogenesis have been reconstituted in vitro, allowing direct analysis of the proteins involved.
format Text
id pubmed-2120557
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21205572008-05-01 Biogenesis of synaptic vesicles in vitro J Cell Biol Articles Synaptic vesicles are synthesized at a rapid rate in nerve terminals to compensate for their rapid loss during neurotransmitter release. Their biogenesis involves endocytosis of synaptic vesicle membrane proteins from the plasma membrane and requires two steps, the segregation of synaptic vesicle membrane proteins from other cellular proteins, and the packaging of those unique proteins into vesicles of the correct size. By labeling an epitope-tagged variant of a synaptic vesicle protein, VAMP (synaptobrevin), at the cell surface of the neuroendocrine cell line PC12, synaptic vesicle biogenesis could be followed with considerable precision, quantitatively and kinetically. Epitope-tagged VAMP was recovered in synaptic vesicles within a few minutes of leaving the cell surface. More efficient targeting was obtained by using the VAMP mutant, del 61-70. Synaptic vesicles did not form at 15 degrees C although endocytosis still occurred. Synaptic vesicles could be generated in vitro from a homogenate of cells labeled at 15 degrees C. The newly formed vesicles are identical to those formed in vivo in their sedimentation characteristics, the presence of the synaptic vesicle protein synaptophysin, and the absence of detectable transferrin receptor. Brain, but not fibroblast cytosol, allows vesicles of the correct size to form. Vesicle formation is time and temperature-dependent, requires ATP, is calcium independent, and is inhibited by GTP-gamma S. Thus, two key steps in synaptic vesicle biogenesis have been reconstituted in vitro, allowing direct analysis of the proteins involved. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2120557/ /pubmed/7544795 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Biogenesis of synaptic vesicles in vitro
title Biogenesis of synaptic vesicles in vitro
title_full Biogenesis of synaptic vesicles in vitro
title_fullStr Biogenesis of synaptic vesicles in vitro
title_full_unstemmed Biogenesis of synaptic vesicles in vitro
title_short Biogenesis of synaptic vesicles in vitro
title_sort biogenesis of synaptic vesicles in vitro
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120557/
https://www.ncbi.nlm.nih.gov/pubmed/7544795