Cargando…

Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes

Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targetin...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120558/
https://www.ncbi.nlm.nih.gov/pubmed/7544796
_version_ 1782141523431784448
collection PubMed
description Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus- resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino- terminal mutants. Both NH2- and COOH-terminal mutants retained insulin- dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin- dependent redistribution of GLUT-4. We conclude that the phenylalanine- based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes.
format Text
id pubmed-2120558
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21205582008-05-01 Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes J Cell Biol Articles Insulin stimulates glucose transport in muscle and adipose tissue by triggering the movement of the glucose transporter GLUT-4 from an intracellular compartment to the cell surface. Fundamental to this process is the intracellular sequestration of GLUT-4 in nonstimulated cells. Two distinct targeting motifs in the amino and carboxy termini of GLUT-4 have been previously identified by expressing chimeras comprised of portions of GLUT-4 and GLUT-1, a transporter isoform that is constitutively targeted to the cell surface, in heterologous cells. These motifs-FQQI in the NH2 terminus and LL in the COOH terminus- resemble endocytic signals that have been described in other proteins. In the present study we have investigated the roles of these motifs in GLUT-4 targeting in insulin-sensitive cells. Epitope-tagged GLUT-4 constructs engineered to differentiate between endogenous and transfected GLUT-4 were stably expressed in 3T3-L1 adipocytes. Targeting was assessed in cells incubated in the presence or absence of insulin by subcellular fractionation. The targeting of epitope-tagged GLUT-4 was indistinguishable from endogenous GLUT-4. Mutation of the FQQI motif (F5 to A5) caused GLUT-4 to constitutively accumulate at the cell surface regardless of expression level. Mutation of the dileucine motif (L489L490 to A489A490) caused an increase in cell surface distribution only at higher levels of expression, but the overall cells surface distribution of this mutant was less than that of the amino- terminal mutants. Both NH2- and COOH-terminal mutants retained insulin- dependent movement from an intracellular to a cell surface locale, suggesting that neither of these motifs is involved in the insulin- dependent redistribution of GLUT-4. We conclude that the phenylalanine- based NH2-terminal and the dileucine-based COOH-terminal motifs play important and distinct roles in GLUT-4 targeting in 3T3-L1 adipocytes. The Rockefeller University Press 1995-09-01 /pmc/articles/PMC2120558/ /pubmed/7544796 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title_full Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title_fullStr Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title_full_unstemmed Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title_short Molecular regulation of GLUT-4 targeting in 3T3-L1 adipocytes
title_sort molecular regulation of glut-4 targeting in 3t3-l1 adipocytes
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120558/
https://www.ncbi.nlm.nih.gov/pubmed/7544796