Cargando…

Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle

It is widely assumed that the coordinate assembly of desmosomal cadherins and plaque proteins into desmosome-typical plaque-coated membrane domains, capable of anchoring intermediate-sized filaments (IF), requires cell-to-cell contacts and a critical extracellular Ca2+ concentration. To test this hy...

Descripción completa

Detalles Bibliográficos
Formato: Texto
Lenguaje:English
Publicado: The Rockefeller University Press 1995
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120618/
https://www.ncbi.nlm.nih.gov/pubmed/7593194
_version_ 1782141537328562176
collection PubMed
description It is widely assumed that the coordinate assembly of desmosomal cadherins and plaque proteins into desmosome-typical plaque-coated membrane domains, capable of anchoring intermediate-sized filaments (IF), requires cell-to-cell contacts and a critical extracellular Ca2+ concentration. To test this hypothesis we studied several cell lines grown for years in media with less than 0.1 mM Ca2+ to steady-state low Ca2+ medium (LCM) conditions, particularly the human keratinocyte line HaCaT devoid of any junctional cell contact (HaCaT-L cells). Using immunolocalization and vesicle fractionation techniques, we found that the transmembrane glycoprotein, desmoglein (Dsg), colocalized with the plaque proteins, desmoplakin and plakoglobin. The sites of coassembly of desmosomal molecules in HaCaT-L cells as well as in HaCaT cells directly brought into LCM were identified as asymmetric plaque-coated plasma membrane domains (half-desmosomes) or as special plaque- associated cytoplasmic vesicles, most of which had formed endocytotically. The surface exposure of Dsg in these half-desmosomes was demonstrated by the binding, in vivo, of antibodies specific for an extracellular Dsg segment which also could cross-bridge them into symmetric quasi-desmosomes. Otherwise, these half-desmosomes were shown in LCM to be taken up endocytotically. Half-desmosomal assemblies were also seen in uncoupled cells in normal Ca2+ medium. We conclude that, in the absence of intercellular contacts, assembly of desmosomal proteins at the cell surface takes place, resulting in transient half- desmosomes which then, in LCM and without a stable partner connection to the adjacent cell, can be endocytotically resumed. This frustrated cycle of synthesis and assembly maintains an ensemble of molecules characteristic of epithelial differentiation and the potential to form desmosomes, even when the final junctional structure cannot be formed. We propose that these half-desmosomal structures are general cell structures of epithelial and other desmosome-forming cells.
format Text
id pubmed-2120618
institution National Center for Biotechnology Information
language English
publishDate 1995
publisher The Rockefeller University Press
record_format MEDLINE/PubMed
spelling pubmed-21206182008-05-01 Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle J Cell Biol Articles It is widely assumed that the coordinate assembly of desmosomal cadherins and plaque proteins into desmosome-typical plaque-coated membrane domains, capable of anchoring intermediate-sized filaments (IF), requires cell-to-cell contacts and a critical extracellular Ca2+ concentration. To test this hypothesis we studied several cell lines grown for years in media with less than 0.1 mM Ca2+ to steady-state low Ca2+ medium (LCM) conditions, particularly the human keratinocyte line HaCaT devoid of any junctional cell contact (HaCaT-L cells). Using immunolocalization and vesicle fractionation techniques, we found that the transmembrane glycoprotein, desmoglein (Dsg), colocalized with the plaque proteins, desmoplakin and plakoglobin. The sites of coassembly of desmosomal molecules in HaCaT-L cells as well as in HaCaT cells directly brought into LCM were identified as asymmetric plaque-coated plasma membrane domains (half-desmosomes) or as special plaque- associated cytoplasmic vesicles, most of which had formed endocytotically. The surface exposure of Dsg in these half-desmosomes was demonstrated by the binding, in vivo, of antibodies specific for an extracellular Dsg segment which also could cross-bridge them into symmetric quasi-desmosomes. Otherwise, these half-desmosomes were shown in LCM to be taken up endocytotically. Half-desmosomal assemblies were also seen in uncoupled cells in normal Ca2+ medium. We conclude that, in the absence of intercellular contacts, assembly of desmosomal proteins at the cell surface takes place, resulting in transient half- desmosomes which then, in LCM and without a stable partner connection to the adjacent cell, can be endocytotically resumed. This frustrated cycle of synthesis and assembly maintains an ensemble of molecules characteristic of epithelial differentiation and the potential to form desmosomes, even when the final junctional structure cannot be formed. We propose that these half-desmosomal structures are general cell structures of epithelial and other desmosome-forming cells. The Rockefeller University Press 1995-11-01 /pmc/articles/PMC2120618/ /pubmed/7593194 Text en This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 4.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/4.0/).
spellingShingle Articles
Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title_full Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title_fullStr Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title_full_unstemmed Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title_short Continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated Sisyphus cycle
title_sort continual assembly of half-desmosomal structures in the absence of cell contacts and their frustrated endocytosis: a coordinated sisyphus cycle
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2120618/
https://www.ncbi.nlm.nih.gov/pubmed/7593194